| File: | hmm.cc |
| Warning: | line 693, column 10 Although the value stored to 'nw' is used in the enclosing expression, the value is never actually read from 'nw' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | |
| 2 | /* |
| 3 | * Copyright (C) 2005 Universitat d'Alacant / Universidad de Alicante |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or |
| 6 | * modify it under the terms of the GNU General Public License as |
| 7 | * published by the Free Software Foundation; either version 2 of the |
| 8 | * License, or (at your option) any later version. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but |
| 11 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | * General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, see <https://www.gnu.org/licenses/>. |
| 17 | */ |
| 18 | /* |
| 19 | * First order hidden Markov model (HMM) implementation (source) |
| 20 | * |
| 21 | * @author Felipe Sánchez-Martínez - fsanchez@dlsi.ua.es |
| 22 | */ |
| 23 | |
| 24 | #include <apertium/hmm.h> |
| 25 | #include "apertium_config.h" |
| 26 | #include <apertium/unlocked_cstdio.h> |
| 27 | #include <lttoolbox/compression.h> |
| 28 | |
| 29 | #include <stdio.h> |
| 30 | #include <unistd.h> |
| 31 | #include <vector> |
| 32 | #include <algorithm> |
| 33 | #include <lttoolbox/string_utils.h> |
| 34 | #include <apertium/file_morpho_stream.h> |
| 35 | |
| 36 | inline bool p_isnan(double v) { |
| 37 | #if __cplusplus202101L >= 201103L |
| 38 | return std::isnan(v); |
| 39 | #else |
| 40 | return ::isnan(v); |
| 41 | #endif |
| 42 | } |
| 43 | |
| 44 | inline bool p_isinf(double v) { |
| 45 | #if __cplusplus202101L >= 201103L |
| 46 | return std::isinf(v); |
| 47 | #else |
| 48 | return ::isinf(v); |
| 49 | #endif |
| 50 | } |
| 51 | |
| 52 | using namespace Apertium; |
| 53 | using namespace tagger_utils; |
| 54 | |
| 55 | TaggerData& HMM::get_tagger_data() { |
| 56 | return tdhmm; |
| 57 | } |
| 58 | |
| 59 | void HMM::deserialise(FILE *Serialised_FILE_Tagger) { |
| 60 | tdhmm.read(Serialised_FILE_Tagger); |
| 61 | eos = (tdhmm.getTagIndex())["TAG_SENT"_u]; |
| 62 | } |
| 63 | |
| 64 | std::vector<UString> &HMM::getArrayTags() { |
| 65 | return tdhmm.getArrayTags(); |
| 66 | } |
| 67 | |
| 68 | void HMM::serialise(FILE *Stream_) { tdhmm.write(Stream_); } |
| 69 | |
| 70 | void HMM::deserialise(const TaggerData &Deserialised_FILE_Tagger) { |
| 71 | tdhmm = TaggerDataHMM(Deserialised_FILE_Tagger); |
| 72 | eos = (tdhmm.getTagIndex())["TAG_SENT"_u]; |
| 73 | } |
| 74 | |
| 75 | void HMM::init_probabilities_from_tagged_text_(MorphoStream &stream_tagged, |
| 76 | MorphoStream &stream_untagged) { |
| 77 | init_probabilities_from_tagged_text(stream_tagged, stream_untagged); |
| 78 | apply_rules(); |
| 79 | } |
| 80 | |
| 81 | void HMM::init_probabilities_kupiec_(MorphoStream &lexmorfo) { |
| 82 | init_probabilities_kupiec(lexmorfo); |
| 83 | apply_rules(); |
| 84 | } |
| 85 | |
| 86 | void HMM::train(MorphoStream &morpho_stream, unsigned long count) { |
| 87 | for (; count > 0; --count) { |
| 88 | morpho_stream.rewind(); |
| 89 | train(morpho_stream); |
| 90 | } |
| 91 | |
| 92 | apply_rules(); |
| 93 | } |
| 94 | |
| 95 | HMM::HMM() {} |
| 96 | |
| 97 | HMM::HMM(TaggerFlags& Flags_) : FILE_Tagger(Flags_) {} |
| 98 | |
| 99 | HMM::HMM(TaggerDataHMM _tdhmm) |
| 100 | : tdhmm(_tdhmm) |
| 101 | { |
| 102 | eos = (tdhmm.getTagIndex())["TAG_SENT"_u]; |
| 103 | } |
| 104 | |
| 105 | HMM::HMM(TaggerDataHMM *tdhmm) : tdhmm(*tdhmm) {} |
| 106 | |
| 107 | HMM::~HMM() {} |
| 108 | |
| 109 | void |
| 110 | HMM::init() |
| 111 | { |
| 112 | } |
| 113 | |
| 114 | void |
| 115 | HMM::set_eos(TTag t) |
| 116 | { |
| 117 | eos = t; |
| 118 | } |
| 119 | |
| 120 | void |
| 121 | HMM::read_ambiguity_classes(FILE *in) |
| 122 | { |
| 123 | while(in) |
| 124 | { |
| 125 | int ntags = Compression::multibyte_read(in); |
| 126 | |
| 127 | if(feof(in)) |
| 128 | { |
| 129 | break; |
| 130 | } |
| 131 | set<TTag> ambiguity_class; |
| 132 | |
| 133 | for(; ntags != 0; ntags--) |
| 134 | { |
| 135 | ambiguity_class.insert(Compression::multibyte_read(in)); |
| 136 | } |
| 137 | |
| 138 | if(ambiguity_class.size() != 0) |
| 139 | { |
| 140 | tdhmm.getOutput().add(ambiguity_class); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | tdhmm.setProbabilities(tdhmm.getTagIndex().size(), tdhmm.getOutput().size()); |
| 145 | } |
| 146 | |
| 147 | void |
| 148 | HMM::write_ambiguity_classes(FILE *out) |
| 149 | { |
| 150 | for(int i=0, limit = tdhmm.getOutput().size(); i != limit; i++) |
| 151 | { |
| 152 | set<TTag> const &ac = (tdhmm.getOutput())[i]; |
| 153 | Compression::multibyte_write(ac.size(), out); |
| 154 | for(set<TTag>::const_iterator it = ac.begin(), limit2 = ac.end(); |
| 155 | it != limit2; it++) |
| 156 | { |
| 157 | Compression::multibyte_write(*it, out); |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | |
| 162 | void |
| 163 | HMM::read_probabilities(FILE *in) |
| 164 | { |
| 165 | tdhmm.read(in); |
| 166 | } |
| 167 | |
| 168 | void |
| 169 | HMM::write_probabilities(FILE *out) |
| 170 | { |
| 171 | tdhmm.write(out); |
| 172 | } |
| 173 | |
| 174 | void |
| 175 | HMM::init_probabilities_kupiec(MorphoStream &lexmorfo) |
| 176 | { |
| 177 | int N = tdhmm.getN(); |
| 178 | int M = tdhmm.getM(); |
| 179 | int i=0, j=0, k=0, k1=0, k2=0, nw=0; |
| 180 | vector <double> classes_ocurrences (M, 1); |
| 181 | vector <vector <double> > classes_pair_ocurrences(M, vector<double>(M, 1)); |
| 182 | vector <double> tags_estimate(N, 0); |
| 183 | vector <vector <double> > tags_pair_estimate(N, vector<double>(N, 0)); |
| 184 | |
| 185 | Collection &output = tdhmm.getOutput(); |
| 186 | |
| 187 | TaggerWord *word=NULL__null; |
| 188 | |
| 189 | set<TTag> tags; |
| 190 | tags.insert(eos); |
| 191 | k1=output[tags]; //The first tag (ambiguity class) seen is the end-of-sentence |
| 192 | |
| 193 | //We count for each ambiguity class the number of ocurrences |
| 194 | word = lexmorfo.get_next_word(); |
| 195 | while((word)) { |
| 196 | if (++nw%10000==0) cerr<<'.'<<flush; |
| 197 | |
| 198 | tags=word->get_tags(); |
| 199 | |
| 200 | if (tags.size()==0) { //This is an unknown word |
| 201 | tags = tdhmm.getOpenClass(); |
| 202 | } |
| 203 | else { |
| 204 | require_ambiguity_class(tdhmm, tags, *word, nw); |
| 205 | } |
| 206 | |
| 207 | k2=output[tags]; |
| 208 | |
| 209 | classes_ocurrences[k1]++; |
| 210 | classes_pair_ocurrences[k1][k2]++; //k1 followed by k2 |
| 211 | delete word; |
| 212 | word=lexmorfo.get_next_word(); |
| 213 | |
| 214 | k1=k2; |
| 215 | |
| 216 | } |
| 217 | |
| 218 | //Estimation of the number of time each tags occurs in the training text |
| 219 | for(i=0; i<N; i++) { |
| 220 | for(k=0; k<M; k++) { |
| 221 | |
| 222 | if(output[k].find(i) != output[k].end()) |
| 223 | tags_estimate[i] += classes_ocurrences[k]/output[k].size(); |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | set<TTag> tags1, tags2; |
| 228 | set<TTag>::iterator itag1, itag2; |
| 229 | for(k1=0; k1<M; k1++) { |
| 230 | tags1=output[k1]; |
| 231 | for(k2=0; k2<M; k2++) { |
| 232 | tags2=output[k2]; |
| 233 | double nocurrences=classes_pair_ocurrences[k1][k2]/((double)(tags1.size()*tags2.size())); |
| 234 | for (itag1=tags1.begin(); itag1!=tags1.end(); itag1++) { |
| 235 | for (itag2=tags2.begin(); itag2!=tags2.end(); itag2++) |
| 236 | tags_pair_estimate[*itag1][*itag2]+=nocurrences; |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | //a[i][j] estimation. |
| 242 | double sum; |
| 243 | for(i=0; i<N; i++) { |
| 244 | sum=0; |
| 245 | for(j=0; j<N; j++) |
| 246 | sum+=tags_pair_estimate[i][j]; |
| 247 | |
| 248 | for(j=0; j<N; j++) { |
| 249 | if (sum>0) |
| 250 | (tdhmm.getA())[i][j] = tags_pair_estimate[i][j]/sum; |
| 251 | else { |
| 252 | (tdhmm.getA())[i][j] = 0; |
| 253 | } |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | //b[i][k] estimation |
| 258 | for(i=0; i<N; i++) { |
| 259 | for(k=0; k<M; k++) { |
| 260 | if (output[k].find(i)!=output[k].end()) { |
| 261 | if (tags_estimate[i]>0) |
| 262 | (tdhmm.getB())[i][k] = (classes_ocurrences[k]/output[k].size())/tags_estimate[i]; |
| 263 | else |
| 264 | (tdhmm.getB())[i][k] = 0; |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | cerr<<"\n"; |
| 269 | } |
| 270 | |
| 271 | |
| 272 | void |
| 273 | HMM::init_probabilities_from_tagged_text(MorphoStream &stream_tagged, |
| 274 | MorphoStream &stream_untagged) { |
| 275 | int i, j, k, nw=0; |
| 276 | int N = tdhmm.getN(); |
| 277 | int M = tdhmm.getM(); |
| 278 | vector <vector <double> > tags_pair(N, vector<double>(N, 0)); |
| 279 | vector <vector <double> > emission(N, vector<double>(M, 0)); |
| 280 | |
| 281 | |
| 282 | TaggerWord *word_tagged=NULL__null, *word_untagged=NULL__null; |
| 283 | Collection &output = tdhmm.getOutput(); |
| 284 | |
| 285 | |
| 286 | set<TTag> tags; |
| 287 | |
| 288 | TTag tag1, tag2; |
| 289 | tag1 = eos; // The first seen tag is the end-of-sentence tag |
| 290 | |
| 291 | word_tagged = stream_tagged.get_next_word(); |
| 292 | word_untagged = stream_untagged.get_next_word(); |
| 293 | while(word_tagged) { |
| 294 | cerr<<*word_tagged; |
| 295 | cerr<<" -- "<<*word_untagged<<"\n"; |
| 296 | |
| 297 | if (word_tagged->get_superficial_form()!=word_untagged->get_superficial_form()) { |
| 298 | cerr<<"\nTagged text (.tagged) and analyzed text (.untagged) streams are not aligned.\n"; |
| 299 | cerr<<"Take a look at tagged text (.tagged).\n"; |
| 300 | cerr<<"Perhaps this is caused by a multiword unit that is not a multiword unit in one of the two files.\n"; |
| 301 | cerr<<*word_tagged<<" -- "<<*word_untagged<<"\n"; |
| 302 | exit(1); |
| 303 | } |
| 304 | |
| 305 | if (++nw%100==0) cerr<<'.'<<flush; |
| 306 | |
| 307 | tag2 = tag1; |
| 308 | |
| 309 | if (word_untagged==NULL__null) { |
| 310 | cerr<<"word_untagged==NULL\n"; |
| 311 | exit(1); |
| 312 | } |
| 313 | |
| 314 | if (word_tagged->get_tags().size()==0) // Unknown word |
| 315 | tag1 = -1; |
| 316 | else if (word_tagged->get_tags().size()>1) // Ambiguous word |
| 317 | cerr<<"Error in tagged text. An ambiguous word was found: "<<word_tagged->get_superficial_form()<<"\n"; |
| 318 | else |
| 319 | tag1 = *(word_tagged->get_tags()).begin(); |
| 320 | |
| 321 | |
| 322 | if ((tag1>=0) && (tag2>=0)) |
| 323 | tags_pair[tag2][tag1]++; |
| 324 | |
| 325 | |
| 326 | if (word_untagged->get_tags().size()==0) { // Unknown word |
| 327 | tags = tdhmm.getOpenClass(); |
| 328 | } |
| 329 | else { |
| 330 | require_ambiguity_class(tdhmm, word_untagged->get_tags(), *word_untagged, nw); |
| 331 | tags = word_untagged->get_tags(); |
| 332 | } |
| 333 | |
| 334 | k=output[tags]; |
| 335 | if(tag1>=0) |
| 336 | emission[tag1][k]++; |
| 337 | |
| 338 | delete word_tagged; |
| 339 | word_tagged=stream_tagged.get_next_word(); |
| 340 | delete word_untagged; |
| 341 | word_untagged=stream_untagged.get_next_word(); |
| 342 | } |
| 343 | |
| 344 | |
| 345 | //Estimate of a[i][j] |
| 346 | for(i=0; i<N; i++) { |
| 347 | double sum=0; |
| 348 | for(j=0; j<N; j++) |
| 349 | sum += tags_pair[i][j]+1.0; |
| 350 | for(j=0; j<N; j++) |
| 351 | (tdhmm.getA())[i][j] = (tags_pair[i][j]+1.0)/sum; |
| 352 | } |
| 353 | |
| 354 | |
| 355 | //Estimate of b[i][k] |
| 356 | for(i=0; i<N; i++) { |
| 357 | int nclasses_appear=0; |
| 358 | double times_appear=0.0; |
| 359 | for(k=0; k<M; k++) { |
| 360 | if (output[k].find(i)!=output[k].end()) { |
| 361 | nclasses_appear++; |
| 362 | times_appear+=emission[i][k]; |
| 363 | } |
| 364 | } |
| 365 | for(k=0; k<M; k++) { |
| 366 | if (output[k].find(i)!=output[k].end()) |
| 367 | (tdhmm.getB())[i][k] = (emission[i][k]+(((double)1.0)/((double)nclasses_appear)))/(times_appear+((double)1.0)); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | cerr<<"\n"; |
| 372 | } |
| 373 | |
| 374 | void |
| 375 | HMM::apply_rules() |
| 376 | { |
| 377 | vector<TForbidRule> &forbid_rules = tdhmm.getForbidRules(); |
| 378 | vector<TEnforceAfterRule> &enforce_rules = tdhmm.getEnforceRules(); |
| 379 | int N = tdhmm.getN(); |
| 380 | int i, j, j2; |
| 381 | bool found; |
| 382 | |
| 383 | for(i=0; i<(int) forbid_rules.size(); i++) { |
| 384 | (tdhmm.getA())[forbid_rules[i].tagi][forbid_rules[i].tagj] = ZERO1e-10; |
| 385 | } |
| 386 | |
| 387 | for(i=0; i<(int) enforce_rules.size(); i++) { |
| 388 | for(j=0; j<N; j++) { |
| 389 | found = false; |
| 390 | for (j2=0; j2<(int) enforce_rules[i].tagsj.size(); j2++) { |
| 391 | if (enforce_rules[i].tagsj[j2]==j) { |
| 392 | found = true; |
| 393 | break; |
| 394 | } |
| 395 | } |
| 396 | if (!found) |
| 397 | (tdhmm.getA())[enforce_rules[i].tagi][j] = ZERO1e-10; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | // Normalize probabilities |
| 402 | for(i=0; i<N; i++) { |
| 403 | double sum=0; |
| 404 | for(j=0; j<N; j++) |
| 405 | sum += (tdhmm.getA())[i][j]; |
| 406 | for(j=0; j<N; j++) { |
| 407 | if (sum>0) |
| 408 | (tdhmm.getA())[i][j] = (tdhmm.getA())[i][j]/sum; |
| 409 | else |
| 410 | (tdhmm.getA())[i][j] = 0; |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | void |
| 416 | HMM::post_ambg_class_scan() { |
| 417 | int N = (tdhmm.getTagIndex()).size(); |
| 418 | int M = (tdhmm.getOutput()).size(); |
| 419 | cerr << N << " states and " << M <<" ambiguity classes\n"; |
| 420 | |
| 421 | tdhmm.setProbabilities(N, M); |
| 422 | } |
| 423 | |
| 424 | void |
| 425 | HMM::filter_ambiguity_classes(const char* input_file, UFILE* out) { |
| 426 | set<set<TTag> > ambiguity_classes; |
| 427 | FileMorphoStream morpho_stream(input_file, true, &tdhmm); |
| 428 | |
| 429 | TaggerWord *word = morpho_stream.get_next_word(); |
| 430 | |
| 431 | while(word) { |
| 432 | set<TTag> tags = word->get_tags(); |
| 433 | if(tags.size() > 0) { |
| 434 | if(ambiguity_classes.find(tags) == ambiguity_classes.end()) { |
| 435 | ambiguity_classes.insert(tags); |
| 436 | word->outputOriginal(out); |
| 437 | //cerr<<word->get_string_tags()<<"\n"; |
| 438 | } |
| 439 | } |
| 440 | delete word; |
| 441 | word = morpho_stream.get_next_word(); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | void |
| 446 | HMM::train(MorphoStream &morpho_stream) { |
| 447 | int i, j, k, t, len, nw = 0; |
| 448 | TaggerWord *word=NULL__null; |
| 449 | TTag tag; |
| 450 | set<TTag> tags, pretags; |
| 451 | set<TTag>::iterator itag, jtag; |
| 452 | map <int, double> gamma; |
| 453 | map <int, double>::iterator jt, kt; |
| 454 | map < int, map <int, double> > alpha, beta, xsi, phi; |
| 455 | map < int, map <int, double> >::iterator it; |
| 456 | double prob, loli; |
| 457 | vector < set<TTag> > pending; |
| 458 | Collection &output = tdhmm.getOutput(); |
| 459 | |
| 460 | int ndesconocidas=0; |
| 461 | // alpha => forward probabilities |
| 462 | // beta => backward probabilities |
| 463 | |
| 464 | loli = 0; |
| 465 | tag = eos; |
| 466 | tags.clear(); |
| 467 | tags.insert(tag); |
| 468 | pending.push_back(tags); |
| 469 | |
| 470 | alpha[0].clear(); |
| 471 | alpha[0][tag] = 1; |
| 472 | |
| 473 | word = morpho_stream.get_next_word(); |
| 474 | |
| 475 | while (word) { |
| 476 | |
| 477 | //cerr<<"Enter para continuar\n"; |
| 478 | //getchar(); |
| 479 | |
| 480 | if (++nw%10000==0) cerr<<'.'<<flush; |
| 481 | |
| 482 | //cerr<<*word<<"\n"; |
| 483 | |
| 484 | pretags = pending.back(); |
| 485 | |
| 486 | tags = word->get_tags(); |
| 487 | |
| 488 | if (tags.size()==0) { // This is an unknown word |
| 489 | tags = tdhmm.getOpenClass(); |
| 490 | ndesconocidas++; |
| 491 | } |
| 492 | |
| 493 | require_ambiguity_class(tdhmm, tags, *word, nw); |
| 494 | |
| 495 | k = output[tags]; |
| 496 | len = pending.size(); |
| 497 | alpha[len].clear(); |
| 498 | |
| 499 | //Forward probabilities |
| 500 | for (itag=tags.begin(); itag!=tags.end(); itag++) { |
| 501 | i=*itag; |
| 502 | for (jtag=pretags.begin(); jtag!=pretags.end(); jtag++) { |
| 503 | j=*jtag; |
| 504 | //cerr<<"previous alpha["<<len<<"]["<<i<<"]="<<alpha[len][i]<<"\n"; |
| 505 | //cerr<<"alpha["<<len-1<<"]["<<j<<"]="<<alpha[len-1][j]<<"\n"; |
| 506 | //cerr<<"a["<<j<<"]["<<i<<"]="<<a[j][i]<<"\n"; |
| 507 | //cerr<<"b["<<i<<"]["<<k<<"]="<<b[i][k]<<"\n"; |
| 508 | alpha[len][i] += alpha[len-1][j]*(tdhmm.getA())[j][i]*(tdhmm.getB())[i][k]; |
| 509 | } |
| 510 | if (alpha[len][i]==0) |
| 511 | alpha[len][i]=DBL_MIN2.2250738585072014e-308; |
| 512 | //cerr<<"alpha["<<len<<"]["<<i<<"]="<<alpha[len][i]<<"\n--------\n"; |
| 513 | } |
| 514 | |
| 515 | if (tags.size()>1) { |
| 516 | pending.push_back(tags); |
| 517 | } else { // word is unambiguous |
| 518 | tag = *tags.begin(); |
| 519 | beta[0].clear(); |
| 520 | beta[0][tag] = 1; |
| 521 | |
| 522 | prob = alpha[len][tag]; |
| 523 | |
| 524 | //cerr<<"prob="<<prob<<"\n"; |
| 525 | //cerr<<"alpha["<<len<<"]["<<tag<<"]="<<alpha[len][tag]<<"\n"; |
| 526 | loli -= log(prob); |
| 527 | |
| 528 | for (t=0; t<len; t++) { // loop from T-1 to 0 |
| 529 | pretags = pending.back(); |
| 530 | pending.pop_back(); |
| 531 | k = output[tags]; |
| 532 | beta[1-t%2].clear(); |
| 533 | for (itag=tags.begin(); itag!=tags.end(); itag++) { |
| 534 | i=*itag; |
| 535 | for (jtag=pretags.begin(); jtag!=pretags.end(); jtag++) { |
| 536 | j = *jtag; |
| 537 | beta[1-t%2][j] += (tdhmm.getA())[j][i]*(tdhmm.getB())[i][k]*beta[t%2][i]; |
| 538 | xsi[j][i] += alpha[len-t-1][j]*(tdhmm.getA())[j][i]*(tdhmm.getB())[i][k]*beta[t%2][i]/prob; |
| 539 | } |
| 540 | double previous_value = gamma[i]; |
| 541 | |
| 542 | gamma[i] += alpha[len-t][i]*beta[t%2][i]/prob; |
| 543 | if (p_isnan(gamma[i])) { |
| 544 | cerr<<"NAN(3) gamma["<<i<<"] = "<<gamma[i]<<" alpha["<<len-t<<"]["<<i<<"]= "<<alpha[len-t][i] |
| 545 | <<" beta["<<t%2<<"]["<<i<<"] = "<<beta[t%2][i]<<" prob = "<<prob<<" previous gamma = "<<previous_value<<"\n"; |
| 546 | exit(1); |
| 547 | } |
| 548 | if (p_isinf(gamma[i])) { |
| 549 | cerr<<"INF(3) gamma["<<i<<"] = "<<gamma[i]<<" alpha["<<len-t<<"]["<<i<<"]= "<<alpha[len-t][i] |
| 550 | <<" beta["<<t%2<<"]["<<i<<"] = "<<beta[t%2][i]<<" prob = "<<prob<<" previous gamma = "<<previous_value<<"\n"; |
| 551 | exit(1); |
| 552 | } |
| 553 | if (gamma[i]==0) { |
| 554 | //cout<<"ZERO(3) gamma["<<i<<"] = "<<gamma[i]<<" alpha["<<len-t<<"]["<<i<<"]= "<<alpha[len-t][i] |
| 555 | // <<" beta["<<t%2<<"]["<<i<<"] = "<<beta[t%2][i]<<" prob = "<<prob<<" previous gamma = "<<previous_value<<"\n"; |
| 556 | gamma[i]=DBL_MIN2.2250738585072014e-308; |
| 557 | //exit(1); |
| 558 | } |
| 559 | phi[i][k] += alpha[len-t][i]*beta[t%2][i]/prob; |
| 560 | } |
| 561 | tags=pretags; |
| 562 | } |
| 563 | |
| 564 | tags.clear(); |
| 565 | tags.insert(tag); |
| 566 | pending.push_back(tags); |
| 567 | alpha[0].clear(); |
| 568 | alpha[0][tag] = 1; |
| 569 | } |
| 570 | |
| 571 | delete word; |
| 572 | word = morpho_stream.get_next_word(); |
| 573 | } |
| 574 | |
| 575 | if ((pending.size()>1) || ((tag!=eos)&&(tag != (tdhmm.getTagIndex())["TAG_kEOF"_u]))) { |
| 576 | cerr << "Warning: The last tag is not the end-of-sentence-tag " |
| 577 | << "but rather " << tdhmm.getArrayTags()[tag] << ". Line: " << nw |
| 578 | << ". Pending: " << pending.size() << ". Tags: "; |
| 579 | cerr << "\n"; |
| 580 | } |
| 581 | |
| 582 | int N = tdhmm.getN(); |
| 583 | int M = tdhmm.getM(); |
| 584 | |
| 585 | //Clean previous values |
| 586 | for(i=0; i<N; i++) { |
| 587 | for(j=0; j<N; j++) |
| 588 | (tdhmm.getA())[i][j]=ZERO1e-10; |
| 589 | for(k=0; k<M; k++) |
| 590 | (tdhmm.getB())[i][k]=ZERO1e-10; |
| 591 | } |
| 592 | |
| 593 | // new parameters |
| 594 | for (it=xsi.begin(); it!=xsi.end(); it++) { |
| 595 | i = it->first; |
| 596 | for (jt=xsi[i].begin(); jt!=xsi[i].end(); jt++) { |
| 597 | j = jt->first; |
| 598 | if (xsi[i][j]>0) { |
| 599 | if (gamma[i]==0) { |
| 600 | cerr<<"Warning: gamma["<<i<<"]=0\n"; |
| 601 | gamma[i]=DBL_MIN2.2250738585072014e-308; |
| 602 | } |
| 603 | |
| 604 | (tdhmm.getA())[i][j] = xsi[i][j]/gamma[i]; |
| 605 | |
| 606 | if (p_isnan((tdhmm.getA())[i][j])) { |
| 607 | cerr<<"NAN\n"; |
| 608 | cerr <<"Error: BW - NAN(1) a["<<i<<"]["<<j<<"]="<<(tdhmm.getA())[i][j]<<"\txsi["<<i<<"]["<<j<<"]="<<xsi[i][j]<<"\tgamma["<<i<<"]="<<gamma[i]<<"\n"; |
| 609 | exit(1); |
| 610 | } |
| 611 | if (p_isinf((tdhmm.getA())[i][j])) { |
| 612 | cerr<<"INF\n"; |
| 613 | cerr <<"Error: BW - INF(1) a["<<i<<"]["<<j<<"]="<<(tdhmm.getA())[i][j]<<"\txsi["<<i<<"]["<<j<<"]="<<xsi[i][j]<<"\tgamma["<<i<<"]="<<gamma[i]<<"\n"; |
| 614 | exit(1); |
| 615 | } |
| 616 | if ((tdhmm.getA())[i][j]==0) { |
| 617 | //cerr <<"Error: BW - ZERO(1) a["<<i<<"]["<<j<<"]="<<(tdhmm.getA())[i][j]<<"\txsi["<<i<<"]["<<j<<"]="<<xsi[i][j]<<"\tgamma["<<i<<"]="<<gamma[i]<<"\n"; |
| 618 | // exit(1); |
| 619 | } |
| 620 | } |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | for (it=phi.begin(); it!=phi.end(); it++) { |
| 625 | i = it->first; |
| 626 | for (kt=phi[i].begin(); kt!=phi[i].end(); kt++) { |
| 627 | k = kt->first; |
| 628 | if (phi[i][k]>0) { |
| 629 | (tdhmm.getB())[i][k] = phi[i][k]/gamma[i]; |
| 630 | |
| 631 | if (p_isnan((tdhmm.getB())[i][k])) { |
| 632 | cerr<<"Error: BW - NAN(2) b["<<i<<"]["<<k<<"]="<<(tdhmm.getB())[i][k]<<"\tphi["<<i<<"]["<<k<<"]="<<phi[i][k]<<"\tgamma["<<i<<"]="<<gamma[i]<<"\n"; |
| 633 | exit(1); |
| 634 | } |
| 635 | if (p_isinf((tdhmm.getB())[i][k])) { |
| 636 | cerr<<"Error: BW - INF(2) b["<<i<<"]["<<k<<"]="<<(tdhmm.getB())[i][k]<<"\tphi["<<i<<"]["<<k<<"]="<<phi[i][k]<<"\tgamma["<<i<<"]="<<gamma[i]<<"\n"; |
| 637 | exit(1); |
| 638 | } |
| 639 | if ((tdhmm.getB())[i][k]==0) { |
| 640 | //cerr <<"Error: BW - ZERO(2) b["<<i<<"]["<<k<<"]="<<(tdhmm.getB())[i][k]<<"\tphi["<<i<<"]["<<k<<"]="<<phi[i][k]<<"\tgamma["<<i<<"]="<<gamma[i]<<"\n"; |
| 641 | // exit(1); |
| 642 | } |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | //It can be possible that a probability is not updated |
| 648 | //We normalize the probabilitites |
| 649 | for(i=0; i<N; i++) { |
| 650 | double sum=0; |
| 651 | for(j=0; j<N; j++) |
| 652 | sum+=(tdhmm.getA())[i][j]; |
| 653 | for(j=0; j<N; j++) |
| 654 | (tdhmm.getA())[i][j]=(tdhmm.getA())[i][j]/sum; |
| 655 | } |
| 656 | |
| 657 | for(i=0; i<N; i++) { |
| 658 | double sum=0; |
| 659 | for(k=0; k<M; k++) { |
| 660 | if(output[k].find(i)!=output[k].end()) |
| 661 | sum+=(tdhmm.getB())[i][k]; |
| 662 | } |
| 663 | for(k=0; k<M; k++) { |
| 664 | if(output[k].find(i)!=output[k].end()) |
| 665 | (tdhmm.getB())[i][k]=(tdhmm.getB())[i][k]/sum; |
| 666 | } |
| 667 | } |
| 668 | |
| 669 | cerr<<"Log="<<loli<<"\n"; |
| 670 | } |
| 671 | |
| 672 | void |
| 673 | HMM::tagger(MorphoStream &morpho_stream, UFILE* Output) { |
| 674 | int i, j, k, nw; |
| 675 | TaggerWord *word = NULL__null; |
| 676 | TTag tag; |
| 677 | |
| 678 | set <TTag> ambg_class_tags, tags, pretags; |
| 679 | set <TTag>::iterator itag, jtag; |
| 680 | |
| 681 | double prob, loli, x; |
| 682 | int N = tdhmm.getN(); |
| 683 | vector <vector <double> > alpha(2, vector<double>(N)); |
| 684 | vector <vector <vector<TTag> > > best(2, vector <vector <TTag> >(N)); |
| 685 | |
| 686 | vector <TaggerWord> wpend; |
| 687 | int nwpend; |
| 688 | |
| 689 | morpho_stream.setNullFlush(TheFlags.getNullFlush()); |
| 690 | |
| 691 | Collection &output = tdhmm.getOutput(); |
| 692 | |
| 693 | loli = nw = 0; |
Although the value stored to 'nw' is used in the enclosing expression, the value is never actually read from 'nw' | |
| 694 | |
| 695 | //Initialization |
| 696 | tags.insert(eos); |
| 697 | alpha[0][eos] = 1; |
| 698 | |
| 699 | word = morpho_stream.get_next_word(); |
| 700 | |
| 701 | while (word) { |
| 702 | wpend.push_back(*word); |
| 703 | nwpend = wpend.size(); |
| 704 | |
| 705 | pretags = tags; // Tags from the previous word |
| 706 | |
| 707 | tags = word->get_tags(); |
| 708 | |
| 709 | if (tags.size()==0) // This is an unknown word |
| 710 | tags = tdhmm.getOpenClass(); |
| 711 | |
| 712 | ambg_class_tags = require_similar_ambiguity_class(tdhmm, tags, *word, TheFlags.getDebug()); |
| 713 | |
| 714 | k = output[ambg_class_tags]; //Ambiguity class the word belongs to |
| 715 | |
| 716 | clear_array_double(&alpha[nwpend%2][0], N); |
| 717 | clear_array_vector(&best[nwpend%2][0], N); |
| 718 | |
| 719 | //Induction |
| 720 | for (itag=tags.begin(); itag!=tags.end(); itag++) { //For all tag from the current word |
| 721 | i=*itag; |
| 722 | for (jtag=pretags.begin(); jtag!=pretags.end(); jtag++) { //For all tags from the previous word |
| 723 | j=*jtag; |
| 724 | x = alpha[1-nwpend%2][j]*(tdhmm.getA())[j][i]*(tdhmm.getB())[i][k]; |
| 725 | if (alpha[nwpend%2][i]<=x) { |
| 726 | if (nwpend>1) |
| 727 | best[nwpend%2][i] = best[1-nwpend%2][j]; |
| 728 | best[nwpend%2][i].push_back(i); |
| 729 | alpha[nwpend%2][i] = x; |
| 730 | } |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | //Backtracking |
| 735 | if (tags.size() == 1) { |
| 736 | tag = *tags.begin(); |
| 737 | prob = alpha[nwpend%2][tag]; |
| 738 | |
| 739 | if (prob>0) |
| 740 | loli -= log(prob); |
| 741 | else { |
| 742 | if (TheFlags.getDebug()) |
| 743 | cerr<<"Problem with word '"<<word->get_superficial_form()<<"' "<<word->get_string_tags()<<"\n"; |
| 744 | } |
| 745 | for (unsigned t=0; t<best[nwpend%2][tag].size(); t++) { |
| 746 | if (TheFlags.getFirst()) { |
| 747 | UString const &micad = wpend[t].get_all_chosen_tag_first(best[nwpend%2][tag][t], (tdhmm.getTagIndex())["TAG_kEOF"_u]); |
| 748 | write(micad, Output); |
| 749 | } else { |
| 750 | // print Output |
| 751 | wpend[t].set_show_sf(TheFlags.getShowSuperficial()); |
| 752 | UString const &micad = wpend[t].get_lexical_form(best[nwpend%2][tag][t], (tdhmm.getTagIndex())["TAG_kEOF"_u]); |
| 753 | write(micad, Output); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | //Return to the initial state |
| 758 | wpend.clear(); |
| 759 | alpha[0][tag] = 1; |
| 760 | } |
| 761 | |
| 762 | delete word; |
| 763 | |
| 764 | if(morpho_stream.getEndOfFile()) |
| 765 | { |
| 766 | if(TheFlags.getNullFlush()) |
| 767 | { |
| 768 | u_fputcu_fputc_72('\0', Output); |
| 769 | tags.clear(); |
| 770 | tags.insert(eos); |
| 771 | alpha[0][eos] = 1; |
| 772 | } |
| 773 | |
| 774 | u_fflushu_fflush_72(Output); |
| 775 | morpho_stream.setEndOfFile(false); |
| 776 | } |
| 777 | word = morpho_stream.get_next_word(); |
| 778 | } |
| 779 | |
| 780 | if ((tags.size()>1)&&(TheFlags.getDebug())) { |
| 781 | cerr << "Error: The text to disambiguate has finished, but there are ambiguous words that has not been disambiguated.\n"; |
| 782 | cerr << "This message should never appears. If you are reading this ..... these are very bad news.\n"; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | |
| 787 | void |
| 788 | HMM::print_A() { |
| 789 | int i,j; |
| 790 | |
| 791 | cout<<"TRANSITION MATRIX (A)\n------------------------------\n"; |
| 792 | for(i=0; i != tdhmm.getN(); i++) |
| 793 | for(j=0; j != tdhmm.getN(); j++) { |
| 794 | cout<<"A["<<i<<"]["<<j<<"] = "<<(tdhmm.getA())[i][j]<<"\n"; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | void |
| 799 | HMM::print_B() { |
| 800 | int i,k; |
| 801 | |
| 802 | cout<<"EMISSION MATRIX (B)\n-------------------------------\n"; |
| 803 | for(i=0; i != tdhmm.getN(); i++) |
| 804 | for(k=0; k != tdhmm.getM(); k++) { |
| 805 | Collection &output = tdhmm.getOutput(); |
| 806 | if(output[k].find(i)!=output[k].end()) |
| 807 | cout<<"B["<<i<<"]["<<k<<"] = "<<(tdhmm.getB())[i][k]<<"\n"; |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | void HMM::print_ambiguity_classes() { |
| 812 | set<TTag> ambiguity_class; |
| 813 | set<TTag>::iterator itag; |
| 814 | cout<<"AMBIGUITY CLASSES\n-------------------------------\n"; |
| 815 | for(int i=0; i != tdhmm.getM(); i++) { |
| 816 | ambiguity_class = (tdhmm.getOutput())[i]; |
| 817 | cout <<i<<": "; |
| 818 | for (itag=ambiguity_class.begin(); itag!=ambiguity_class.end(); itag++) { |
| 819 | cout << *itag <<" "; |
| 820 | } |
| 821 | cout << "\n"; |
| 822 | } |
| 823 | } |