| File: | constructions.c |
| Warning: | line 1956, column 6 Value stored to 'in' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* Foma: a finite-state toolkit and library. */ |
| 2 | /* Copyright © 2008-2021 Mans Hulden */ |
| 3 | |
| 4 | /* This file is part of foma. */ |
| 5 | |
| 6 | /* Licensed under the Apache License, Version 2.0 (the "License"); */ |
| 7 | /* you may not use this file except in compliance with the License. */ |
| 8 | /* You may obtain a copy of the License at */ |
| 9 | |
| 10 | /* http://www.apache.org/licenses/LICENSE-2.0 */ |
| 11 | |
| 12 | /* Unless required by applicable law or agreed to in writing, software */ |
| 13 | /* distributed under the License is distributed on an "AS IS" BASIS, */ |
| 14 | /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ |
| 15 | /* See the License for the specific language governing permissions and */ |
| 16 | /* limitations under the License. */ |
| 17 | |
| 18 | #include <stdio.h> |
| 19 | #include <stdlib.h> |
| 20 | #include <string.h> |
| 21 | #include "foma.h" |
| 22 | |
| 23 | #define KLEENE_STAR0 0 |
| 24 | #define KLEENE_PLUS1 1 |
| 25 | #define OPTIONALITY2 2 |
| 26 | |
| 27 | #define COMPLEMENT0 0 |
| 28 | #define COMPLETE1 1 |
| 29 | |
| 30 | #define STACK_3_PUSH(a,b,c)int_stack_push(a); int_stack_push(b); int_stack_push(c); int_stack_push(a); int_stack_push(b); int_stack_push(c); |
| 31 | #define STACK_2_PUSH(a,b)int_stack_push(a); int_stack_push(b); int_stack_push(a); int_stack_push(b); |
| 32 | |
| 33 | struct mergesigma { |
| 34 | char *symbol; |
| 35 | unsigned char presence; /* 1 = in net 1, 2 = in net 2, 3 = in both */ |
| 36 | int number; |
| 37 | struct mergesigma *next; |
| 38 | }; |
| 39 | |
| 40 | int sort_cmp(const void *a, const void *b) { |
| 41 | return (((const struct fsm_state *)a)->state_no - ((const struct fsm_state *)b)->state_no); |
| 42 | } |
| 43 | |
| 44 | int add_fsm_arc(struct fsm_state *fsm, int offset, int state_no, int in, int out, int target, int final_state, int start_state); |
| 45 | |
| 46 | struct fsm *fsm_kleene_closure(struct fsm *net, int optionality); |
| 47 | |
| 48 | struct fsm *fsm_kleene_star(struct fsm *net) { |
| 49 | return (fsm_kleene_closure(net, KLEENE_STAR0)); |
| 50 | } |
| 51 | |
| 52 | struct fsm *fsm_kleene_plus(struct fsm *net) { |
| 53 | return (fsm_kleene_closure(net, KLEENE_PLUS1)); |
| 54 | } |
| 55 | |
| 56 | struct fsm *fsm_optionality(struct fsm *net) { |
| 57 | return (fsm_kleene_closure(net, OPTIONALITY2)); |
| 58 | } |
| 59 | |
| 60 | struct fsm *fsm_escape(char *symbol) { |
| 61 | return(fsm_symbol(symbol+1)); |
| 62 | } |
| 63 | |
| 64 | /* Convert a multicharacter-string-containing machine */ |
| 65 | /* to the equivalent "letter" machine where all arcs */ |
| 66 | /* are single utf8 letters. */ |
| 67 | |
| 68 | struct fsm *fsm_letter_machine(struct fsm *net) { |
| 69 | |
| 70 | struct fsm *outnet; |
| 71 | struct fsm_read_handle *inh; |
| 72 | struct fsm_construct_handle *outh; |
| 73 | int i, steps, source, target, addstate, innum, outnum, inlen, outlen; |
| 74 | char *in, *out, *currin, *currout, tmpin[128], tmpout[128]; |
| 75 | |
| 76 | inh = fsm_read_init(fsm_minimize(net)); |
| 77 | outh = fsm_construct_init("name"); |
| 78 | addstate = net->statecount; |
| 79 | |
| 80 | while (fsm_get_next_arc(inh)) { |
| 81 | in = fsm_get_arc_in(inh); |
| 82 | out = fsm_get_arc_out(inh); |
| 83 | innum = fsm_get_arc_num_in(inh); |
| 84 | outnum = fsm_get_arc_num_out(inh); |
| 85 | source = fsm_get_arc_source(inh); |
| 86 | target = fsm_get_arc_target(inh); |
| 87 | |
| 88 | if (((innum > IDENTITY2) && utf8strlen(in) > 1) || ((outnum > IDENTITY2) && utf8strlen(out) > 1)) { |
| 89 | inlen = innum <= IDENTITY2 ? 1 : utf8strlen(in); |
| 90 | outlen = outnum <= IDENTITY2 ? 1 : utf8strlen(out); |
| 91 | steps = inlen > outlen ? inlen : outlen; |
| 92 | |
| 93 | target = addstate; |
| 94 | for (i = 0; i < steps; i++) { |
| 95 | if (innum <= IDENTITY2 || inlen < 1) { |
| 96 | if (inlen < 1) |
| 97 | currin = "@_EPSILON_SYMBOL_@"; |
| 98 | else |
| 99 | currin = in; |
| 100 | } else { |
| 101 | strncpy(tmpin, in, utf8skip(in)+1); |
| 102 | *(tmpin+utf8skip(in)+1) = '\0'; |
| 103 | currin = tmpin; |
| 104 | inlen--; |
| 105 | in = in+utf8skip(in)+1; |
| 106 | } |
| 107 | if (outnum <= IDENTITY2 || outlen < 1) { |
| 108 | if (outlen < 1) |
| 109 | currout = "@_EPSILON_SYMBOL_@"; |
| 110 | else |
| 111 | currout = out; |
| 112 | } else { |
| 113 | strncpy(tmpout, out, utf8skip(in)+1); |
| 114 | *(tmpout+utf8skip(out)+1) = '\0'; |
| 115 | currout = tmpout; |
| 116 | out = out+utf8skip(out)+1; |
| 117 | outlen--; |
| 118 | } |
| 119 | if (i == 0 && steps > 1) { |
| 120 | target = addstate; |
| 121 | addstate++; |
| 122 | } |
| 123 | if (i > 0 && (steps-i == 1)) { |
| 124 | source = addstate - 1; |
| 125 | target = fsm_get_arc_target(inh); |
| 126 | } |
| 127 | if (i > 0 && (steps-i != 1)) { |
| 128 | source = addstate-1; |
| 129 | target = addstate; |
| 130 | addstate++; |
| 131 | } |
| 132 | fsm_construct_add_arc(outh,source,target,currin,currout); |
| 133 | } |
| 134 | } else { |
| 135 | fsm_construct_add_arc(outh,source,target,in,out); |
| 136 | } |
| 137 | } |
| 138 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 139 | fsm_construct_set_final(outh, i); |
| 140 | } |
| 141 | while ((i = fsm_get_next_initial(inh)) != -1) { |
| 142 | fsm_construct_set_initial(outh, i); |
| 143 | } |
| 144 | fsm_read_done(inh); |
| 145 | outnet = fsm_construct_done(outh); |
| 146 | return(outnet); |
| 147 | } |
| 148 | |
| 149 | struct fsm *fsm_explode(char *symbol) { |
| 150 | struct fsm *net; |
| 151 | struct fsm_construct_handle *h; |
| 152 | char *tempstring; |
| 153 | int length, i, j, skip; |
| 154 | |
| 155 | h = fsm_construct_init(""); |
| 156 | fsm_construct_set_initial(h,0); |
| 157 | |
| 158 | length = strlen(symbol)-2; |
| 159 | for (i=1, j=1; i <= length; i += skip, j++) { |
| 160 | skip = utf8skip(symbol+i)+1; |
| 161 | tempstring = xxstrndup(((symbol+i)),skip); |
| 162 | fsm_construct_add_arc(h,j-1,j,tempstring,tempstring); |
| 163 | free(tempstring); |
| 164 | } |
| 165 | fsm_construct_set_final(h, j-1); |
| 166 | net = fsm_construct_done(h); |
| 167 | return(net); |
| 168 | } |
| 169 | |
| 170 | struct fsm *fsm_symbol(char *symbol) { |
| 171 | struct fsm *net; |
| 172 | int symbol_no; |
| 173 | |
| 174 | net = fsm_create(""); |
| 175 | fsm_update_flags(net, YES1, YES1, YES1, YES1, YES1, NO0); |
| 176 | if (strcmp(symbol,"@_EPSILON_SYMBOL_@")==0) { |
| 177 | /* Epsilon */ |
| 178 | (void)sigma_add_special(EPSILON0, net->sigma); |
| 179 | net->states = malloc(sizeof(struct fsm_state)*2); |
| 180 | add_fsm_arc(net->states, 0, 0, -1,-1,-1,1,1); |
| 181 | add_fsm_arc(net->states, 1, -1,-1,-1,-1,-1,-1); |
| 182 | net->arccount = 0; |
| 183 | net->statecount = 1; |
| 184 | net->linecount = 1; |
| 185 | net->finalcount = 1; |
| 186 | net->is_deterministic = NO0; |
| 187 | net->is_minimized = NO0; |
| 188 | net->is_epsilon_free = NO0; |
| 189 | } else { |
| 190 | if ((strcmp(symbol,"@_IDENTITY_SYMBOL_@") == 0)) { |
| 191 | symbol_no = sigma_add_special(IDENTITY2,net->sigma); |
| 192 | } else { |
| 193 | symbol_no = sigma_add(symbol,net->sigma); |
| 194 | } |
| 195 | net->states = malloc(sizeof(struct fsm_state)*3); |
| 196 | add_fsm_arc(net->states, 0, 0, symbol_no, symbol_no, 1, 0, 1); |
| 197 | add_fsm_arc(net->states, 1, 1, -1, -1, -1, 1, 0); |
| 198 | add_fsm_arc(net->states, 2, -1, -1, -1, -1, -1, -1); |
| 199 | net->arity = 1; |
| 200 | net->pathcount = 1; |
| 201 | net->arccount = 1; |
| 202 | net->statecount = 2; |
| 203 | net->linecount = 2; |
| 204 | net->finalcount = 1; |
| 205 | net->arcs_sorted_in = YES1; |
| 206 | net->arcs_sorted_out = YES1; |
| 207 | net->is_deterministic = YES1; |
| 208 | net->is_minimized = YES1; |
| 209 | net->is_epsilon_free = YES1; |
| 210 | } |
| 211 | return(net); |
| 212 | } |
| 213 | |
| 214 | void fsm_sort_lines(struct fsm *net) { |
| 215 | struct fsm_state *fsm; |
| 216 | fsm = net->states; |
| 217 | qsort(fsm, find_arccount(fsm), sizeof(struct fsm_state), sort_cmp); |
| 218 | } |
| 219 | |
| 220 | void fsm_update_flags(struct fsm *net, int det, int pru, int min, int eps, int loop, int completed) { |
| 221 | net->is_deterministic = det; |
| 222 | net->is_pruned = pru; |
| 223 | net->is_minimized = min; |
| 224 | net->is_epsilon_free = eps; |
| 225 | net->is_loop_free = loop; |
| 226 | net->is_completed = completed; |
| 227 | net->arcs_sorted_in = NO0; |
| 228 | net->arcs_sorted_out = NO0; |
| 229 | } |
| 230 | |
| 231 | int fsm_count_states(struct fsm_state *fsm) { |
| 232 | int i, temp = -1, states = 0; |
| 233 | for(i=0; (fsm+i)->state_no != -1; i++) { |
| 234 | if (temp != (fsm+i)->state_no) { |
| 235 | states++; |
| 236 | temp = (fsm+i)->state_no; |
| 237 | } |
| 238 | } |
| 239 | return(states); |
| 240 | } |
| 241 | |
| 242 | struct state_arr { |
| 243 | int final; |
| 244 | int start; |
| 245 | struct fsm_state *transitions; |
| 246 | }; |
| 247 | |
| 248 | struct state_arr *init_state_pointers(struct fsm_state *fsm_state) { |
| 249 | |
| 250 | /* Create an array for quick lookup of whether states are final, and a pointer to the first line regarding each state */ |
| 251 | |
| 252 | struct state_arr *state_arr; |
| 253 | int states, i, sold; |
| 254 | sold = -1; |
| 255 | states = fsm_count_states(fsm_state); |
| 256 | state_arr = malloc(sizeof(struct state_arr)*(states+1)); |
| 257 | for (i=0; i<states; i++) { |
| 258 | (state_arr+i)->final = 0; |
| 259 | (state_arr+i)->start = 0; |
| 260 | } |
| 261 | |
| 262 | for (i=0; (fsm_state+i)->state_no != -1; i++) { |
| 263 | if ((fsm_state+i)->final_state == 1) |
| 264 | (state_arr+((fsm_state+i)->state_no))->final = 1; |
| 265 | if ((fsm_state+i)->start_state == 1) |
| 266 | (state_arr+((fsm_state+i)->state_no))->start = 1; |
| 267 | if ((fsm_state+i)->state_no != sold) { |
| 268 | (state_arr+((fsm_state+i)->state_no))->transitions = (fsm_state+i); |
| 269 | sold = (fsm_state+i)->state_no; |
| 270 | } |
| 271 | } |
| 272 | return(state_arr); |
| 273 | } |
| 274 | |
| 275 | /* An open addressing scheme (with linear probing) to store triplets of ints */ |
| 276 | /* and hashing them with an automatically increasing key at every insert */ |
| 277 | /* The table is rehashed whenever occupancy reaches 0.5 */ |
| 278 | |
| 279 | struct triplethash_triplets { |
| 280 | int a; |
| 281 | int b; |
| 282 | int c; |
| 283 | int key; |
| 284 | }; |
| 285 | |
| 286 | struct triplethash { |
| 287 | struct triplethash_triplets *triplets; |
| 288 | unsigned int tablesize; |
| 289 | int occupancy; |
| 290 | }; |
| 291 | |
| 292 | struct triplethash *triplet_hash_init() { |
| 293 | struct triplethash *th; |
| 294 | int i; |
| 295 | th = malloc(sizeof(struct triplethash)); |
| 296 | th->tablesize = 128; |
| 297 | th->occupancy = 0; |
| 298 | th->triplets = malloc(sizeof(struct triplethash_triplets) * th->tablesize); |
| 299 | for (i = 0; i < th->tablesize; i++) { |
| 300 | (th->triplets+i)->key = -1; |
| 301 | } |
| 302 | return(th); |
| 303 | } |
| 304 | |
| 305 | unsigned int triplethash_hashf(int a, int b, int c) { |
| 306 | return((unsigned int)(a * 7907 + b * 86028157 + c * 7919)); |
| 307 | } |
| 308 | |
| 309 | void triplet_hash_free(struct triplethash *th) { |
| 310 | if (th != NULL((void*)0)) { |
| 311 | if (th->triplets != NULL((void*)0)) { |
| 312 | free(th->triplets); |
| 313 | } |
| 314 | free(th); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | void triplet_hash_rehash(struct triplethash *th); |
| 319 | |
| 320 | void triplet_hash_insert_with_key(struct triplethash *th, int a, int b, int c, int key) { |
| 321 | struct triplethash_triplets *th_table; |
| 322 | unsigned int hash; |
| 323 | th_table = th->triplets; |
| 324 | hash = triplethash_hashf(a, b, c) % th->tablesize; |
| 325 | for (;;) { |
| 326 | if ((th_table + hash)->key == -1) { |
| 327 | (th_table + hash)->key = key; |
| 328 | (th_table + hash)->a = a; |
| 329 | (th_table + hash)->b = b; |
| 330 | (th_table + hash)->c = c; |
| 331 | break; |
| 332 | } |
| 333 | hash++; |
| 334 | if (hash >= th->tablesize) |
| 335 | hash -= th->tablesize; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | int triplet_hash_insert(struct triplethash *th, int a, int b, int c) { |
| 340 | struct triplethash_triplets *th_table; |
| 341 | unsigned int hash; |
| 342 | th_table = th->triplets; |
| 343 | hash = triplethash_hashf(a,b,c) % th->tablesize; |
| 344 | for (;;) { |
| 345 | if ((th_table + hash)->key == - 1) { |
| 346 | (th_table + hash)->key = th->occupancy; |
| 347 | (th_table + hash)->a = a; |
| 348 | (th_table + hash)->b = b; |
| 349 | (th_table + hash)->c = c; |
| 350 | th->occupancy = th->occupancy + 1; |
| 351 | if (th->occupancy > th->tablesize / 2) { |
| 352 | triplet_hash_rehash(th); |
| 353 | } |
| 354 | return(th->occupancy - 1); |
| 355 | } |
| 356 | hash++; |
| 357 | if (hash >= th->tablesize) |
| 358 | hash -= th->tablesize; |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | void triplet_hash_rehash(struct triplethash *th) { |
| 363 | int i; |
| 364 | unsigned int newtablesize, oldtablesize; |
| 365 | struct triplethash_triplets *oldtriplets; |
| 366 | newtablesize = th->tablesize * 2; |
| 367 | oldtablesize = th->tablesize; |
| 368 | oldtriplets = th->triplets; |
| 369 | th->triplets = malloc(sizeof(struct triplethash_triplets) * newtablesize); |
| 370 | th->tablesize = newtablesize; |
| 371 | for (i = 0; i < newtablesize; i++) { |
| 372 | (th->triplets+i)->key = -1; |
| 373 | } |
| 374 | for (i = 0; i < oldtablesize; i++) { |
| 375 | if ((oldtriplets+i)-> key != -1) { |
| 376 | triplet_hash_insert_with_key(th, (oldtriplets+i)->a, (oldtriplets+i)->b, (oldtriplets+i)->c, (oldtriplets+i)->key); |
| 377 | } |
| 378 | } |
| 379 | free(oldtriplets); |
| 380 | } |
| 381 | |
| 382 | int triplet_hash_find(struct triplethash *th, int a, int b, int c) { |
| 383 | struct triplethash_triplets *th_table; |
| 384 | unsigned int hash, j; |
| 385 | th_table = th->triplets; |
| 386 | hash = triplethash_hashf(a, b, c) % th->tablesize; |
| 387 | for (j = 0; j < th->tablesize; j++) { |
| 388 | if ((th_table + hash)->key == - 1) |
| 389 | return -1; |
| 390 | if ((th_table + hash)->a == a && (th_table + hash)->b == b && (th_table + hash)->c == c) { |
| 391 | return((th_table + hash)->key); |
| 392 | } |
| 393 | hash++; |
| 394 | if (hash >= th->tablesize) |
| 395 | hash -= th->tablesize; |
| 396 | } |
| 397 | return -1; |
| 398 | } |
| 399 | |
| 400 | struct fsm *fsm_intersect(struct fsm *net1, struct fsm *net2) { |
| 401 | |
| 402 | struct blookup {int mainloop; int target; } *array, *bptr; |
| 403 | int a,b,current_state, current_start, current_final, target_number, sigma2size, mainloop; |
| 404 | struct fsm_state *machine_a, *machine_b; |
| 405 | struct state_arr *point_a, *point_b; |
| 406 | struct fsm *new_net; |
| 407 | struct triplethash *th; |
| 408 | |
| 409 | net1 = fsm_minimize(net1); |
| 410 | net2 = fsm_minimize(net2); |
| 411 | |
| 412 | if (fsm_isempty(net1) || fsm_isempty(net2)) { |
| 413 | fsm_destroy(net1); |
| 414 | fsm_destroy(net2); |
| 415 | return(fsm_empty_set()); |
| 416 | } |
| 417 | |
| 418 | fsm_merge_sigma(net1, net2); |
| 419 | |
| 420 | fsm_update_flags(net1, YES1, NO0, UNK2, YES1, UNK2, UNK2); |
| 421 | |
| 422 | machine_a = net1->states; |
| 423 | machine_b = net2->states; |
| 424 | |
| 425 | sigma2size = sigma_max(net2->sigma)+1; |
| 426 | array = calloc(sigma2size*sigma2size, sizeof(struct blookup)); |
| 427 | mainloop = 0; |
| 428 | |
| 429 | /* Intersect two networks by the running-in-parallel method */ |
| 430 | /* new state 0 = {0,0} */ |
| 431 | |
| 432 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
| 433 | |
| 434 | th = triplet_hash_init(); |
| 435 | triplet_hash_insert(th, 0, 0, 0); |
| 436 | |
| 437 | fsm_state_init(sigma_max(net1->sigma)); |
| 438 | |
| 439 | point_a = init_state_pointers(machine_a); |
| 440 | point_b = init_state_pointers(machine_b); |
| 441 | |
| 442 | while (!int_stack_isempty()) { |
| 443 | |
| 444 | /* Get a pair of states to examine */ |
| 445 | |
| 446 | a = int_stack_pop(); |
| 447 | b = int_stack_pop(); |
| 448 | |
| 449 | current_state = triplet_hash_find(th, a, b, 0); |
| 450 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1)) ? 1 : 0; |
| 451 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
| 452 | |
| 453 | fsm_state_set_current_state(current_state, current_final, current_start); |
| 454 | |
| 455 | /* Create a lookup index for machine b */ |
| 456 | /* array[in][out] holds the target for this state and the symbol pair in:out */ |
| 457 | /* Also, we keep track of whether an entry is fresh by the mainloop counter */ |
| 458 | /* so we don't mistakenly use an old entry and don't have to clear the table */ |
| 459 | /* between each state pair we encounter */ |
| 460 | |
| 461 | for (mainloop++, machine_b = (point_b+b)->transitions; machine_b->state_no == b; machine_b++) { |
| 462 | if (machine_b->in < 0) continue; |
| 463 | bptr = array+(machine_b->in*sigma2size)+machine_b->out; |
| 464 | bptr->mainloop = mainloop; |
| 465 | bptr->target = machine_b->target; |
| 466 | } |
| 467 | |
| 468 | /* The main loop where we run the machines in parallel */ |
| 469 | /* We look at each transition of a in this state, and consult the index of b */ |
| 470 | /* we just created */ |
| 471 | |
| 472 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 473 | if (machine_a->in < 0 || machine_a->out < 0) continue; |
| 474 | bptr = array+(machine_a->in*sigma2size)+machine_a->out; |
| 475 | |
| 476 | if (bptr->mainloop != mainloop) |
| 477 | continue; |
| 478 | |
| 479 | if ((target_number = triplet_hash_find(th, machine_a->target, bptr->target, 0)) == -1) { |
| 480 | STACK_2_PUSH(bptr->target, machine_a->target)int_stack_push(bptr->target); int_stack_push(machine_a-> target);; |
| 481 | target_number = triplet_hash_insert(th, machine_a->target, bptr->target, 0); |
| 482 | } |
| 483 | |
| 484 | fsm_state_add_arc(current_state, machine_a->in, machine_a->out, target_number, current_final, current_start); |
| 485 | |
| 486 | } |
| 487 | fsm_state_end_state(); |
| 488 | } |
| 489 | new_net = fsm_create(""); |
| 490 | fsm_sigma_destroy(new_net->sigma); |
| 491 | new_net->sigma = net1->sigma; |
| 492 | net1->sigma = NULL((void*)0); |
| 493 | fsm_destroy(net2); |
| 494 | fsm_destroy(net1); |
| 495 | fsm_state_close(new_net); |
| 496 | free(point_a); |
| 497 | free(point_b); |
| 498 | free(array); |
| 499 | triplet_hash_free(th); |
| 500 | return(fsm_coaccessible(new_net)); |
| 501 | } |
| 502 | |
| 503 | struct fsm *fsm_compose(struct fsm *net1, struct fsm *net2) { |
| 504 | |
| 505 | |
| 506 | /* The composition algorithm is the basic naive composition where we lazily */ |
| 507 | /* take the cross-product of states P and Q and move to a new state with symbols */ |
| 508 | /* ain, bout if the symbols aout = bin. Also, if aout = 0 state p goes to */ |
| 509 | /* its target, while q stays. Similarly, if bin = 0, q goes to its target */ |
| 510 | /* while p stays. */ |
| 511 | |
| 512 | /* We have two variants of the algorithm to avoid creating multiple paths: */ |
| 513 | /* 1) Bistate composition. In this variant, when we create a new state, we call it */ |
| 514 | /* (p,q,mode) where mode = 0 or 1, depending on what kind of an arc we followed */ |
| 515 | /* to get there. If we followed an x:y arc where x and y are both real symbols */ |
| 516 | /* we always go to mode 0, however, if we followed an 0:y arc, we go to mode 1. */ |
| 517 | /* from mode 1, we do not follow x:0 arcs. Each (p,q,mode) is unique, and */ |
| 518 | /* from (p,q,X) we always consider the transitions from p and q. */ |
| 519 | /* We never create arcs (x:0 0:y) yielding x:y. */ |
| 520 | |
| 521 | /* 2) Tristate composition. Here we always go to mode 0 with a x:y arc. */ |
| 522 | /* (x:0,0:y) yielding x:y is allowed, but only in mode 0 */ |
| 523 | /* (x:y y:z) is always allowed and results in target = mode 0 */ |
| 524 | /* 0:y arcs lead to mode 2, and from there we stay in mode 2 with 0:y */ |
| 525 | /* in mode 2 we only consider 0:y and x:y arcs */ |
| 526 | /* x:0 arcs lead to mode 1, and from there we stay in mode 1 with x:0 */ |
| 527 | /* in mode 1 we only consider x:0 and x:y arcs */ |
| 528 | |
| 529 | /* It seems unsettled which type of composition is better. Tristate is similar to */ |
| 530 | /* the filter transducer given in Mohri, Pereira and Riley (1996) and works well */ |
| 531 | /* for cases such as [a:0 b:0 c:0 .o. 0:d 0:e 0:f], yielding the shortest path. */ |
| 532 | /* However, for generic cases, bistate seems to yield smaller transducers. */ |
| 533 | /* The global variable g_compose_tristate is set to OFF by default */ |
| 534 | |
| 535 | struct outarray { |
| 536 | short int symin; |
| 537 | short int symout; |
| 538 | int target; |
| 539 | int mainloop; |
| 540 | } *outarray, *iptr, *currtail; |
| 541 | |
| 542 | struct index { |
| 543 | struct outarray *tail; |
| 544 | } *index; |
| 545 | |
| 546 | extern int g_compose_tristate, g_flag_is_epsilon; |
| 547 | int a,b,i,mainloop,current_state, current_start, current_final, target_number, ain, bin, aout, bout, asearch, max2sigma; |
| 548 | struct fsm_state *machine_a, *machine_b; |
| 549 | struct state_arr *point_a, *point_b; |
| 550 | struct triplethash *th; |
| 551 | int mode; |
| 552 | _Bool *is_flag = NULL((void*)0); |
| 553 | |
| 554 | |
| 555 | net1 = fsm_minimize(net1); |
| 556 | net2 = fsm_minimize(net2); |
| 557 | |
| 558 | if (fsm_isempty(net1) || fsm_isempty(net2)) { |
| 559 | fsm_destroy(net1); |
| 560 | fsm_destroy(net2); |
| 561 | return(fsm_empty_set()); |
| 562 | } |
| 563 | |
| 564 | /* If flag-is-epsilon is on, we need to add the flag symbols */ |
| 565 | /* in both networks to each other's sigma so that UNKNOWN */ |
| 566 | /* or IDENTITY symbols do not match these flags, since they are */ |
| 567 | /* supposed to have the behavior of EPSILON */ |
| 568 | /* And we need to do this before merging the sigmas, of course */ |
| 569 | |
| 570 | if (g_flag_is_epsilon) { |
| 571 | struct sigma *sig1, *sig2; |
| 572 | int flags1, flags2; |
| 573 | flags1 = flags2 = 0; |
| 574 | sig2 = net2->sigma; |
| 575 | max2sigma = sigma_max(net2->sigma); |
| 576 | for (sig1 = net1->sigma; sig1 != NULL((void*)0); sig1 = sig1->next) { |
| 577 | if (flag_check(sig1->symbol)) { |
| 578 | flags1 = 1; |
| 579 | if (sigma_find(sig1->symbol, sig2) == -1) { |
| 580 | sigma_add(sig1->symbol, sig2); |
| 581 | } |
| 582 | } |
| 583 | } |
| 584 | |
| 585 | sig1 = net1->sigma; |
| 586 | for (sig2 = net2->sigma; sig2 != NULL((void*)0) ; sig2 = sig2->next) { |
| 587 | if (flag_check(sig2->symbol)) { |
| 588 | if (sig2->number <= max2sigma) { |
| 589 | flags2 = 1; |
| 590 | } |
| 591 | if (sigma_find(sig2->symbol, sig1) == -1) { |
| 592 | sigma_add(sig2->symbol, sig1); |
| 593 | } |
| 594 | } |
| 595 | } |
| 596 | sigma_sort(net2); |
| 597 | sigma_sort(net1); |
| 598 | if (flags1 && flags2) { |
| 599 | printf("***Warning: flag-is-epsilon is ON and both networks contain flags in composition. This may yield incorrect results. Set flag-is-epsilon to OFF.\n"); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | fsm_merge_sigma(net1, net2); |
| 604 | |
| 605 | if (g_flag_is_epsilon) { |
| 606 | /* Create lookup table for quickly checking if a symbol is a flag */ |
| 607 | struct sigma *sig1; |
| 608 | is_flag = malloc(sizeof(_Bool)*(sigma_max(net1->sigma)+1)); |
| 609 | for (sig1 = net1->sigma; sig1 != NULL((void*)0); sig1=sig1->next) { |
| 610 | if (flag_check(sig1->symbol)) { |
| 611 | *(is_flag+(sig1->number)) = 1; |
| 612 | } else { |
| 613 | *(is_flag+(sig1->number)) = 0; |
| 614 | } |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | fsm_update_flags(net1, YES1, NO0, UNK2, YES1, UNK2, UNK2); |
| 619 | |
| 620 | machine_a = net1->states; |
| 621 | machine_b = net2->states; |
| 622 | |
| 623 | max2sigma = sigma_max(net2->sigma); |
| 624 | |
| 625 | /* Create an index for looking up input symbols in machine b quickly */ |
| 626 | /* We store each machine_b->in symbol in outarray[symin][...] */ |
| 627 | /* the array index[symin] points to the tail of the current list in outarray */ |
| 628 | /* (we may have many entries for one input symbol as there may be many outputs */ |
| 629 | /* The field mainloop tells us whether the entry is current as we want to loop */ |
| 630 | /* UNKNOWN and IDENTITY are indexed as UNKNOWN because we need to find both */ |
| 631 | /* as they share some semantics */ |
| 632 | |
| 633 | index = calloc(max2sigma+1, sizeof(struct index)); |
| 634 | outarray = calloc((max2sigma+2)*(max2sigma+1), sizeof(struct outarray)); |
| 635 | |
| 636 | for (i=0; i <= max2sigma; i++) { |
| 637 | (index+i)->tail = outarray + ((max2sigma+2)*i); |
| 638 | } |
| 639 | |
| 640 | |
| 641 | /* Mode, a, b */ |
| 642 | STACK_3_PUSH(0,0,0)int_stack_push(0); int_stack_push(0); int_stack_push(0);; |
| 643 | |
| 644 | th = triplet_hash_init(); |
| 645 | triplet_hash_insert(th, 0, 0, 0); |
| 646 | |
| 647 | fsm_state_init(sigma_max(net1->sigma)); |
| 648 | |
| 649 | point_a = init_state_pointers(machine_a); |
| 650 | point_b = init_state_pointers(machine_b); |
| 651 | |
| 652 | mainloop = 0; |
| 653 | |
| 654 | while (!int_stack_isempty()) { |
| 655 | |
| 656 | /* Get a pair of states to examine */ |
| 657 | |
| 658 | a = int_stack_pop(); |
| 659 | b = int_stack_pop(); |
| 660 | mode = int_stack_pop(); |
| 661 | |
| 662 | current_state = triplet_hash_find(th, a,b,mode); |
| 663 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1) && (mode == 0)) ? 1 : 0; |
| 664 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
| 665 | |
| 666 | fsm_state_set_current_state(current_state, current_final, current_start); |
| 667 | |
| 668 | /* Create the index for machine b in this state */ |
| 669 | for (mainloop++, machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
| 670 | int bindex; |
| 671 | /* Index b */ |
| 672 | bindex = (machine_b->in == IDENTITY2) ? UNKNOWN1 : machine_b->in; |
| 673 | if (bindex < 0 || machine_b->target < 0) |
| 674 | continue; |
| 675 | |
| 676 | iptr = (index+bindex)->tail; |
| 677 | if (iptr->mainloop != mainloop) { |
| 678 | iptr = (index+bindex)->tail = outarray+(bindex*(max2sigma+2)); |
| 679 | } else { |
| 680 | iptr++; |
| 681 | } |
| 682 | iptr->symin = machine_b->in; |
| 683 | iptr->symout = machine_b->out; |
| 684 | iptr->mainloop = mainloop; |
| 685 | iptr->target = machine_b->target; |
| 686 | (index+bindex)->tail = iptr; |
| 687 | } |
| 688 | |
| 689 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 690 | |
| 691 | /* If we have the same transition from (a,b)-> some state */ |
| 692 | /* If we have x:y y:z trans to some state */ |
| 693 | aout = machine_a->out; |
| 694 | ain = machine_a->in; |
| 695 | /* IDENTITY is indexed under UNKNOWN (see above) */ |
| 696 | asearch = (aout == IDENTITY2) ? UNKNOWN1 : aout; |
| 697 | if (aout < 0) continue; |
| 698 | iptr = outarray+(asearch*(max2sigma+2)); |
| 699 | currtail = (index+asearch)->tail + 1; |
| 700 | for ( ; iptr != currtail && iptr->mainloop == mainloop ; iptr++) { |
| 701 | |
| 702 | ain = machine_a->in; |
| 703 | aout = machine_a->out; |
| 704 | bin = iptr->symin; |
| 705 | bout = iptr->symout; |
| 706 | |
| 707 | if (aout == IDENTITY2 && bin == UNKNOWN1) { |
| 708 | ain = aout = UNKNOWN1; |
| 709 | } |
| 710 | else if (aout == UNKNOWN1 && bin == IDENTITY2) { |
| 711 | bin = bout = UNKNOWN1; |
| 712 | } |
| 713 | |
| 714 | if (!g_compose_tristate) { |
| 715 | if (bin == aout && bin != -1 && bin != EPSILON0) { |
| 716 | /* mode -> 0 */ |
| 717 | if ((target_number = triplet_hash_find(th, machine_a->target, iptr->target, 0)) == -1) { |
| 718 | STACK_3_PUSH(0, iptr->target, machine_a->target)int_stack_push(0); int_stack_push(iptr->target); int_stack_push (machine_a->target);; |
| 719 | target_number = triplet_hash_insert(th, machine_a->target, iptr->target, 0); |
| 720 | } |
| 721 | |
| 722 | fsm_state_add_arc(current_state, ain, bout, target_number, current_final, current_start); |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | else if (g_compose_tristate) { |
| 727 | if (bin == aout && bin != -1 && ((bin != EPSILON0 || mode == 0))) { |
| 728 | /* mode -> 0 */ |
| 729 | if ((target_number = triplet_hash_find(th, machine_a->target, iptr->target, 0)) == -1) { |
| 730 | STACK_3_PUSH(0, iptr->target, machine_a->target)int_stack_push(0); int_stack_push(iptr->target); int_stack_push (machine_a->target);; |
| 731 | target_number = triplet_hash_insert(th, machine_a->target, iptr->target, 0); |
| 732 | } |
| 733 | |
| 734 | fsm_state_add_arc(current_state, ain, bout, target_number, current_final, current_start); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | /* Treat epsilon outputs on machine a (may include flags) */ |
| 742 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 743 | aout = machine_a->out; |
| 744 | if (aout != EPSILON0 && g_flag_is_epsilon == 0) |
| 745 | continue; |
| 746 | ain = machine_a->in; |
| 747 | |
| 748 | if (g_flag_is_epsilon && aout != -1 && mode == 0 && *(is_flag+aout)) { |
| 749 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 0)) == -1) { |
| 750 | STACK_3_PUSH(0, b, machine_a->target)int_stack_push(0); int_stack_push(b); int_stack_push(machine_a ->target);; |
| 751 | target_number = triplet_hash_insert(th, machine_a->target, b, 0); |
| 752 | } |
| 753 | fsm_state_add_arc(current_state, ain, aout, target_number, current_final, current_start); |
| 754 | } |
| 755 | |
| 756 | if (!g_compose_tristate) { |
| 757 | /* Check A:0 arcs on upper side */ |
| 758 | if (aout == EPSILON0 && mode == 0) { |
| 759 | /* mode -> 0 */ |
| 760 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 0)) == -1) { |
| 761 | STACK_3_PUSH(0, b, machine_a->target)int_stack_push(0); int_stack_push(b); int_stack_push(machine_a ->target);; |
| 762 | target_number = triplet_hash_insert(th, machine_a->target, b, 0); |
| 763 | } |
| 764 | |
| 765 | fsm_state_add_arc(current_state, ain, EPSILON0, target_number, current_final, current_start); |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | else if (g_compose_tristate) { |
| 770 | if (aout == EPSILON0 && (mode != 2)) { |
| 771 | /* mode -> 1 */ |
| 772 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 1)) == -1) { |
| 773 | STACK_3_PUSH(1, b, machine_a->target)int_stack_push(1); int_stack_push(b); int_stack_push(machine_a ->target);; |
| 774 | target_number = triplet_hash_insert(th, machine_a->target, b, 1); |
| 775 | } |
| 776 | |
| 777 | fsm_state_add_arc(current_state, ain, EPSILON0, target_number, current_final, current_start); |
| 778 | |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | } |
| 783 | /* Treat epsilon inputs on machine b (may include flags) */ |
| 784 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
| 785 | bin = machine_b->in; |
| 786 | if (bin != EPSILON0 && g_flag_is_epsilon == 0) |
| 787 | continue; |
| 788 | |
| 789 | bout = machine_b->out; |
| 790 | |
| 791 | if (g_flag_is_epsilon && bin != -1 && *(is_flag+bin)) { |
| 792 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 1)) == -1) { |
| 793 | STACK_3_PUSH(1, machine_b->target,a)int_stack_push(1); int_stack_push(machine_b->target); int_stack_push (a);; |
| 794 | target_number = triplet_hash_insert(th, a, machine_b->target, 1); |
| 795 | } |
| 796 | fsm_state_add_arc(current_state, bin, bout, target_number, current_final, current_start); |
| 797 | } |
| 798 | |
| 799 | if (!g_compose_tristate) { |
| 800 | /* Check 0:A arcs on lower side */ |
| 801 | if (bin == EPSILON0) { |
| 802 | /* mode -> 1 */ |
| 803 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 1)) == -1) { |
| 804 | STACK_3_PUSH(1, machine_b->target,a)int_stack_push(1); int_stack_push(machine_b->target); int_stack_push (a);; |
| 805 | target_number = triplet_hash_insert(th, a, machine_b->target, 1); |
| 806 | } |
| 807 | |
| 808 | fsm_state_add_arc(current_state, EPSILON0, bout, target_number, current_final, current_start); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | else if (g_compose_tristate) { |
| 813 | /* Check 0:A arcs on lower side */ |
| 814 | if (bin == EPSILON0 && mode != 1) { |
| 815 | /* mode -> 1 */ |
| 816 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 2)) == -1) { |
| 817 | STACK_3_PUSH(2, machine_b->target, a)int_stack_push(2); int_stack_push(machine_b->target); int_stack_push (a);; |
| 818 | target_number = triplet_hash_insert(th, a, machine_b->target, 2); |
| 819 | } |
| 820 | |
| 821 | fsm_state_add_arc(current_state, EPSILON0, bout, target_number, current_final, current_start); |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | fsm_state_end_state(); |
| 826 | } |
| 827 | |
| 828 | free(net1->states); |
| 829 | fsm_destroy(net2); |
| 830 | fsm_state_close(net1); |
| 831 | free(point_a); |
| 832 | free(point_b); |
| 833 | free(index); |
| 834 | free(outarray); |
| 835 | |
| 836 | if (g_flag_is_epsilon) |
| 837 | free(is_flag); |
| 838 | triplet_hash_free(th); |
| 839 | net1 = fsm_topsort(fsm_coaccessible(net1)); |
| 840 | return(fsm_coaccessible(net1)); |
| 841 | } |
| 842 | |
| 843 | struct mergesigma *add_to_mergesigma(struct mergesigma *msigma, struct sigma *sigma, short presence) { |
| 844 | int number = 0; |
| 845 | |
| 846 | if (msigma->number == -1) { |
| 847 | number = 2; |
| 848 | } else { |
| 849 | msigma->next = malloc(sizeof(struct mergesigma)); |
| 850 | number = msigma->number; |
| 851 | msigma = msigma->next; |
| 852 | msigma->next = NULL((void*)0); |
| 853 | } |
| 854 | |
| 855 | if (sigma->number < 3) { |
| 856 | msigma->number = sigma->number; |
| 857 | } else { |
| 858 | if (number < 3) |
| 859 | number = 2; |
| 860 | msigma->number = number+1; |
| 861 | } |
| 862 | msigma->symbol = sigma->symbol; |
| 863 | msigma->presence = presence; |
| 864 | return(msigma); |
| 865 | } |
| 866 | |
| 867 | struct sigma *copy_mergesigma(struct mergesigma *mergesigma) { |
| 868 | struct sigma *sigma, *new_sigma; |
| 869 | |
| 870 | sigma = new_sigma = NULL((void*)0); |
| 871 | while(mergesigma != NULL((void*)0)) { |
| 872 | if (sigma == NULL((void*)0)) { |
| 873 | sigma = malloc(sizeof(struct sigma)); |
| 874 | new_sigma = sigma; |
| 875 | } else { |
| 876 | sigma->next = malloc(sizeof(struct sigma)); |
| 877 | sigma = sigma->next; |
| 878 | } |
| 879 | sigma->next = NULL((void*)0); |
| 880 | sigma->number = mergesigma->number; |
| 881 | |
| 882 | sigma->symbol = NULL((void*)0); |
| 883 | if (mergesigma->symbol != NULL((void*)0)) |
| 884 | sigma->symbol = strdup(mergesigma->symbol); |
| 885 | mergesigma = mergesigma->next; |
| 886 | } |
| 887 | return(new_sigma); |
| 888 | } |
| 889 | |
| 890 | void fsm_merge_sigma(struct fsm *net1, struct fsm *net2) { |
| 891 | |
| 892 | struct sigma *sigma_1, *sigma_2, *new_sigma_1 = NULL((void*)0), *new_sigma_2 = NULL((void*)0); |
| 893 | struct mergesigma *mergesigma, *mergesigma2, *start_mergesigma; |
| 894 | struct fsm_state *fsm_state, *new_1_state, *new_2_state; |
| 895 | int i, j, end_1 = 0, end_2 = 0, sigmasizes, *mapping_1, *mapping_2, equal = 1, unknown_1 = 0, unknown_2 = 0, net_unk = 0, net_adds = 0, net_lines; |
| 896 | |
| 897 | if (!fsm_options.skip_word_boundary_marker) { |
| 898 | i = sigma_find(".#.", net1->sigma); |
| 899 | j = sigma_find(".#.", net2->sigma); |
| 900 | if (i != -1 && j == -1) { |
| 901 | sigma_add(".#.", net2->sigma); |
| 902 | sigma_sort(net2); |
| 903 | } |
| 904 | if (j != -1 && i == -1) { |
| 905 | sigma_add(".#.", net1->sigma); |
| 906 | sigma_sort(net1); |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | sigma_1 = net1->sigma; |
| 911 | sigma_2 = net2->sigma; |
| 912 | |
| 913 | sigmasizes = sigma_max(sigma_1) + sigma_max(sigma_2) + 3; |
| 914 | |
| 915 | mapping_1 = malloc(sizeof(int)*sigmasizes); |
| 916 | mapping_2 = malloc(sizeof(int)*sigmasizes); |
| 917 | |
| 918 | /* Fill mergesigma */ |
| 919 | |
| 920 | mergesigma = malloc(sizeof(struct mergesigma)); |
| 921 | mergesigma->number = -1; |
| 922 | mergesigma->symbol = NULL((void*)0); |
| 923 | mergesigma->next = NULL((void*)0); |
| 924 | start_mergesigma = mergesigma; |
| 925 | |
| 926 | /* Loop over sigma 1, sigma 2 */ |
| 927 | for (;;) { |
| 928 | if (sigma_1 == NULL((void*)0)) |
| 929 | end_1 = 1; |
| 930 | if (sigma_2 == NULL((void*)0)) |
| 931 | end_2 = 1; |
| 932 | if (end_1 && end_2) |
| 933 | break; |
| 934 | if (end_2) { |
| 935 | /* Treating only 1 now */ |
| 936 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 1); |
| 937 | *(mapping_1+(sigma_1->number)) = mergesigma->number; |
| 938 | sigma_1 = sigma_1->next; |
| 939 | equal = 0; |
| 940 | continue; |
| 941 | } |
| 942 | else if (end_1) { |
| 943 | /* Treating only 2 now */ |
| 944 | mergesigma = add_to_mergesigma(mergesigma, sigma_2, 2); |
| 945 | *(mapping_2+(sigma_2->number)) = mergesigma->number; |
| 946 | sigma_2 = sigma_2->next; |
| 947 | equal = 0; |
| 948 | continue; |
| 949 | } |
| 950 | |
| 951 | else { |
| 952 | |
| 953 | /* Both alive */ |
| 954 | |
| 955 | /* 1 or 2 contains special characters */ |
| 956 | if ((sigma_1->number <= IDENTITY2) || (sigma_2->number <= IDENTITY2)) { |
| 957 | |
| 958 | /* Treating zeros or unknowns */ |
| 959 | |
| 960 | if ((sigma_1->number == UNKNOWN1) || (sigma_1->number == IDENTITY2)) |
| 961 | unknown_1 = 1; |
| 962 | if ((sigma_2->number == UNKNOWN1) || (sigma_2->number == IDENTITY2)) |
| 963 | unknown_2 = 1; |
| 964 | |
| 965 | if (sigma_1->number == sigma_2->number) { |
| 966 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 3); |
| 967 | sigma_1 = sigma_1->next; |
| 968 | sigma_2 = sigma_2->next; |
| 969 | } |
| 970 | else if (sigma_1->number < sigma_2->number) { |
| 971 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 1); |
| 972 | sigma_1 = sigma_1->next; |
| 973 | equal = 0; |
| 974 | } |
| 975 | else { |
| 976 | mergesigma = add_to_mergesigma(mergesigma, sigma_2, 2); |
| 977 | sigma_2 = sigma_2->next; |
| 978 | equal = 0; |
| 979 | } |
| 980 | continue; |
| 981 | } |
| 982 | /* Both contain non-special chars */ |
| 983 | if (strcmp(sigma_1->symbol, sigma_2->symbol) == 0) { |
| 984 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 3); |
| 985 | /* Add symbol numbers to mapping */ |
| 986 | *(mapping_1+(sigma_1->number)) = mergesigma->number; |
| 987 | *(mapping_2+(sigma_2->number)) = mergesigma->number; |
| 988 | |
| 989 | sigma_1 = sigma_1->next; |
| 990 | sigma_2 = sigma_2->next; |
| 991 | } |
| 992 | else if (strcmp(sigma_1->symbol, sigma_2->symbol) < 0) { |
| 993 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 1); |
| 994 | *(mapping_1+(sigma_1->number)) = mergesigma->number; |
| 995 | sigma_1 = sigma_1->next; |
| 996 | equal = 0; |
| 997 | } |
| 998 | else { |
| 999 | mergesigma = add_to_mergesigma(mergesigma, sigma_2, 2); |
| 1000 | *(mapping_2+(sigma_2->number)) = mergesigma->number; |
| 1001 | sigma_2 = sigma_2->next; |
| 1002 | equal = 0; |
| 1003 | } |
| 1004 | continue; |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | /* Go over both net1 and net2 and replace arc numbers with new mappings */ |
| 1009 | |
| 1010 | fsm_state = net1->states; |
| 1011 | for (i=0; (fsm_state+i)->state_no != -1; i++) { |
| 1012 | if ((fsm_state+i)->in > 2) |
| 1013 | (fsm_state+i)->in = *(mapping_1+(fsm_state+i)->in); |
| 1014 | if ((fsm_state+i)->out > 2) |
| 1015 | (fsm_state+i)->out = *(mapping_1+(fsm_state+i)->out); |
| 1016 | } |
| 1017 | fsm_state = net2->states; |
| 1018 | for (i=0; (fsm_state+i)->state_no != -1; i++) { |
| 1019 | if ((fsm_state+i)->in > 2) |
| 1020 | (fsm_state+i)->in = *(mapping_2+(fsm_state+i)->in); |
| 1021 | if ((fsm_state+i)->out > 2) |
| 1022 | (fsm_state+i)->out = *(mapping_2+(fsm_state+i)->out); |
| 1023 | } |
| 1024 | |
| 1025 | /* Copy mergesigma to net1, net2 */ |
| 1026 | |
| 1027 | new_sigma_1 = copy_mergesigma(start_mergesigma); |
| 1028 | new_sigma_2 = copy_mergesigma(start_mergesigma); |
| 1029 | |
| 1030 | fsm_sigma_destroy(net1->sigma); |
| 1031 | fsm_sigma_destroy(net2->sigma); |
| 1032 | |
| 1033 | net1->sigma = new_sigma_1; |
| 1034 | net2->sigma = new_sigma_2; |
| 1035 | |
| 1036 | /* Expand on ?, ?:x, y:? */ |
| 1037 | |
| 1038 | if (unknown_1 && !equal) { |
| 1039 | /* Expand net 1 */ |
| 1040 | fsm_state = net1->states; |
| 1041 | net_lines = find_arccount(net1->states); |
| 1042 | for(mergesigma = start_mergesigma; mergesigma != NULL((void*)0); mergesigma=mergesigma->next) { |
| 1043 | if(mergesigma->presence == 2) { |
| 1044 | net_unk++; |
| 1045 | } |
| 1046 | } |
| 1047 | for(net_adds = 0, i=0; (fsm_state+i)->state_no != -1; i++) { |
| 1048 | if ((fsm_state+i)->in == IDENTITY2) |
| 1049 | net_adds += net_unk; |
| 1050 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out != UNKNOWN1)) |
| 1051 | net_adds += net_unk; |
| 1052 | if (((fsm_state+i)->out == UNKNOWN1) && ((fsm_state+i)->in != UNKNOWN1)) |
| 1053 | net_adds += net_unk; |
| 1054 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out == UNKNOWN1)) |
| 1055 | net_adds += net_unk*net_unk - net_unk + 2*net_unk; |
| 1056 | } |
| 1057 | |
| 1058 | new_1_state = malloc(sizeof(struct fsm_state)*(net_adds+net_lines+1)); |
| 1059 | for(i=0,j=0; (fsm_state+i)->state_no != -1; i++) { |
| 1060 | |
| 1061 | if ((fsm_state+i)->in == IDENTITY2) { |
| 1062 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1063 | j++; |
| 1064 | for (mergesigma=start_mergesigma; mergesigma != NULL((void*)0); mergesigma=mergesigma->next) { |
| 1065 | if ((mergesigma->presence == 2) && (mergesigma->number > IDENTITY2)) { |
| 1066 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1067 | j++; |
| 1068 | } |
| 1069 | } |
| 1070 | } |
| 1071 | |
| 1072 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out != UNKNOWN1) { |
| 1073 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1074 | j++; |
| 1075 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
| 1076 | if ((mergesigma->presence == 2) && (mergesigma->number > IDENTITY2)) { |
| 1077 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, mergesigma->number, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1078 | j++; |
| 1079 | } |
| 1080 | } |
| 1081 | } |
| 1082 | |
| 1083 | if (((fsm_state+i)->in != UNKNOWN1) && ((fsm_state+i)->out == UNKNOWN1)) { |
| 1084 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1085 | j++; |
| 1086 | for (mergesigma=start_mergesigma; mergesigma != NULL((void*)0); mergesigma = mergesigma->next) { |
| 1087 | if ((mergesigma->presence == 2) && (mergesigma->number > IDENTITY2)) { |
| 1088 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1089 | j++; |
| 1090 | } |
| 1091 | } |
| 1092 | } |
| 1093 | |
| 1094 | /* Replace ?:? with ?:[all unknowns] [all unknowns]:? and [all unknowns]:[all unknowns] where a != b */ |
| 1095 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out == UNKNOWN1) { |
| 1096 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1097 | j++; |
| 1098 | for (mergesigma2=start_mergesigma; mergesigma2 != NULL((void*)0) ; mergesigma2 = mergesigma2->next) { |
| 1099 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
| 1100 | if (((mergesigma->presence == 2 && mergesigma2->presence == 2 && mergesigma->number > IDENTITY2 && mergesigma2->number > IDENTITY2) || (mergesigma->number == UNKNOWN1 && mergesigma2->number > IDENTITY2 && mergesigma2->presence == 2) || (mergesigma2->number == UNKNOWN1 && mergesigma->number > IDENTITY2 && mergesigma->presence == 2)) && mergesigma->number != mergesigma2->number) { |
| 1101 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma2->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1102 | j++; |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | /* Simply copy arcs that are not IDENTITY or UNKNOWN */ |
| 1109 | if (((fsm_state+i)->in > IDENTITY2 || (fsm_state+i)->in == EPSILON0) && ((fsm_state+i)->out > IDENTITY2 || (fsm_state+i)->out == EPSILON0)) { |
| 1110 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1111 | j++; |
| 1112 | } |
| 1113 | |
| 1114 | if ((fsm_state+i)->in == -1) { |
| 1115 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1116 | j++; |
| 1117 | } |
| 1118 | } |
| 1119 | |
| 1120 | add_fsm_arc(new_1_state, j, -1, -1, -1, -1, -1, -1); |
| 1121 | free(net1->states); |
| 1122 | net1->states = new_1_state; |
| 1123 | } |
| 1124 | |
| 1125 | if (unknown_2 && !equal) { |
| 1126 | /* Expand net 2 */ |
| 1127 | fsm_state = net2->states; |
| 1128 | net_lines = find_arccount(net2->states); |
| 1129 | for(net_unk = 0, mergesigma = start_mergesigma; mergesigma != NULL((void*)0); mergesigma=mergesigma->next) { |
| 1130 | if(mergesigma->presence == 1) { |
| 1131 | net_unk++; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | for(net_adds = 0, i=0; (fsm_state+i)->state_no != -1; i++) { |
| 1136 | if ((fsm_state+i)->in == IDENTITY2) |
| 1137 | net_adds += net_unk; |
| 1138 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out != UNKNOWN1)) |
| 1139 | net_adds += net_unk; |
| 1140 | if (((fsm_state+i)->out == UNKNOWN1) && ((fsm_state+i)->in != UNKNOWN1)) |
| 1141 | net_adds += net_unk; |
| 1142 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out == UNKNOWN1)) |
| 1143 | net_adds += net_unk*net_unk - net_unk + 2*net_unk; |
| 1144 | } |
| 1145 | |
| 1146 | /* We need net_add new lines in fsm_state */ |
| 1147 | new_2_state = malloc(sizeof(struct fsm_state)*(net_adds+net_lines+1)); |
| 1148 | for(i=0,j=0; (fsm_state+i)->state_no != -1; i++) { |
| 1149 | |
| 1150 | if ((fsm_state+i)->in == IDENTITY2) { |
| 1151 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1152 | j++; |
| 1153 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
| 1154 | if ((mergesigma->presence == 1) && (mergesigma->number > IDENTITY2)) { |
| 1155 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1156 | j++; |
| 1157 | } |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out != UNKNOWN1) { |
| 1162 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1163 | j++; |
| 1164 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
| 1165 | if (mergesigma->presence == 1 && mergesigma->number > IDENTITY2) { |
| 1166 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, mergesigma->number, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1167 | j++; |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | if ((fsm_state+i)->in != UNKNOWN1 && (fsm_state+i)->out == UNKNOWN1) { |
| 1173 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1174 | j++; |
| 1175 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
| 1176 | if ((mergesigma->presence == 1) && (mergesigma->number > IDENTITY2)) { |
| 1177 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1178 | j++; |
| 1179 | } |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out == UNKNOWN1) { |
| 1184 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1185 | j++; |
| 1186 | for (mergesigma2=start_mergesigma; mergesigma2 != NULL((void*)0) ; mergesigma2 = mergesigma2->next) { |
| 1187 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
| 1188 | if (((mergesigma->presence == 1 && mergesigma2->presence == 1 && mergesigma->number > IDENTITY2 && mergesigma2->number > IDENTITY2) || (mergesigma->number == UNKNOWN1 && mergesigma2->number > IDENTITY2 && mergesigma2->presence == 1) || (mergesigma2->number == UNKNOWN1 && mergesigma->number > IDENTITY2 && mergesigma->presence == 1)) && mergesigma->number != mergesigma2->number) { |
| 1189 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma2->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1190 | j++; |
| 1191 | } |
| 1192 | } |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | /* Simply copy arcs that are not IDENTITY or UNKNOWN */ |
| 1197 | if (((fsm_state+i)->in > IDENTITY2 || (fsm_state+i)->in == EPSILON0) && ((fsm_state+i)->out > IDENTITY2 || (fsm_state+i)->out == EPSILON0)) { |
| 1198 | |
| 1199 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1200 | j++; |
| 1201 | } |
| 1202 | |
| 1203 | if ((fsm_state+i)->in == -1) { |
| 1204 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
| 1205 | j++; |
| 1206 | } |
| 1207 | } |
| 1208 | |
| 1209 | add_fsm_arc(new_2_state, j, -1, -1, -1, -1, -1, -1); |
| 1210 | free(net2->states); |
| 1211 | net2->states = new_2_state; |
| 1212 | } |
| 1213 | free(mapping_1); |
| 1214 | free(mapping_2); |
| 1215 | |
| 1216 | /* Free structure */ |
| 1217 | for (mergesigma2 = NULL((void*)0); start_mergesigma != NULL((void*)0); ) { |
| 1218 | mergesigma2 = start_mergesigma; |
| 1219 | start_mergesigma = start_mergesigma->next; |
| 1220 | free(mergesigma2); |
| 1221 | } |
| 1222 | } |
| 1223 | |
| 1224 | |
| 1225 | int add_fsm_arc(struct fsm_state *fsm, int offset, int state_no, int in, int out, int target, int final_state, int start_state) { |
| 1226 | |
| 1227 | (fsm+offset)->state_no = state_no; |
| 1228 | (fsm+offset)->in = in; |
| 1229 | (fsm+offset)->out= out; |
| 1230 | (fsm+offset)->target = target; |
| 1231 | (fsm+offset)->final_state = final_state; |
| 1232 | (fsm+offset)->start_state = start_state; |
| 1233 | offset++; |
| 1234 | return(offset); |
| 1235 | } |
| 1236 | |
| 1237 | |
| 1238 | void fsm_count(struct fsm *net) { |
| 1239 | struct fsm_state *fsm; |
| 1240 | int i, linecount, arccount, oldstate, finalcount, maxstate; |
| 1241 | linecount = arccount = finalcount = maxstate = 0; |
| 1242 | |
| 1243 | oldstate = -1; |
| 1244 | |
| 1245 | fsm = net->states; |
| 1246 | for (i=0; (fsm+i)->state_no != -1; i++) { |
| 1247 | if ((fsm+i)->state_no > maxstate) |
| 1248 | maxstate = (fsm+i)->state_no; |
| 1249 | |
| 1250 | linecount++; |
| 1251 | if ((fsm+i)->target != -1) { |
| 1252 | arccount++; |
| 1253 | // if (((fsm+i)->in != (fsm+i)->out) || ((fsm+i)->in == UNKNOWN) || ((fsm+i)->out == UNKNOWN)) |
| 1254 | // arity = 2; |
| 1255 | } |
| 1256 | if ((fsm+i)->state_no != oldstate) { |
| 1257 | if ((fsm+i)->final_state) { |
| 1258 | finalcount++; |
| 1259 | } |
| 1260 | oldstate = (fsm+i)->state_no; |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | linecount++; |
| 1265 | net->statecount = maxstate+1; |
| 1266 | net->linecount = linecount; |
| 1267 | net->arccount = arccount; |
| 1268 | net->finalcount = finalcount; |
| 1269 | } |
| 1270 | |
| 1271 | static void fsm_add_to_states(struct fsm *net, int add) { |
| 1272 | struct fsm_state *fsm; |
| 1273 | int i; |
| 1274 | |
| 1275 | fsm=net->states; |
| 1276 | for(i=0; (fsm+i)->state_no != -1; i++) { |
| 1277 | (fsm+i)->state_no = (fsm+i)->state_no + add; |
| 1278 | if ((fsm+i)->target != -1) |
| 1279 | (fsm+i)->target = (fsm+i)->target + add; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | struct fsm *fsm_concat_m_n(struct fsm *net1, int m, int n) { |
| 1284 | struct fsm *acc; |
| 1285 | int i; |
| 1286 | acc = fsm_empty_string(); |
| 1287 | for (i = 1; i <= n ;i++) { |
| 1288 | if (i > m) |
| 1289 | acc = fsm_concat(acc, fsm_optionality(fsm_copy(net1))); |
| 1290 | else |
| 1291 | acc = fsm_concat(acc, fsm_copy(net1)); |
| 1292 | } |
| 1293 | fsm_destroy(net1); |
| 1294 | return(acc); |
| 1295 | } |
| 1296 | |
| 1297 | struct fsm *fsm_concat_n(struct fsm *net1, int n) { |
| 1298 | return(fsm_concat_m_n(net1,n,n)); |
| 1299 | } |
| 1300 | |
| 1301 | struct fsm *fsm_concat(struct fsm *net1, struct fsm *net2) { |
| 1302 | struct fsm_state *fsm1, *fsm2, *new_fsm; |
| 1303 | int i,j,current_final; |
| 1304 | |
| 1305 | fsm_merge_sigma(net1, net2); |
| 1306 | |
| 1307 | fsm1 = net1->states; |
| 1308 | fsm2 = net2->states; |
| 1309 | fsm_count(net1); |
| 1310 | fsm_count(net2); |
| 1311 | /* The concatenation of a language with no final state should yield the empty language */ |
| 1312 | if ((net1->finalcount == 0) || (net2->finalcount == 0)) { |
| 1313 | fsm_destroy(net1); |
| 1314 | fsm_destroy(net2); |
| 1315 | net1 = fsm_empty_set(); |
| 1316 | return(net1); |
| 1317 | } |
| 1318 | |
| 1319 | /* Add |fsm1| states to the state numbers of fsm2 */ |
| 1320 | fsm_add_to_states(net2, net1->statecount); |
| 1321 | |
| 1322 | new_fsm = malloc(((sizeof(struct fsm_state))*(net1->linecount + net2->linecount + net1->finalcount + 2 ))); |
| 1323 | current_final = -1; |
| 1324 | /* Copy fsm1, fsm2 after each other, adding appropriate epsilon arcs */ |
| 1325 | for(i=0,j=0; (fsm1+i)->state_no != -1; i++) { |
| 1326 | if (((fsm1+i)->final_state == 1) && ((fsm1+i)->state_no != current_final)) { |
| 1327 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, EPSILON0, EPSILON0, net1->statecount, 0, (fsm1+i)->start_state); |
| 1328 | current_final = (fsm1+i)->state_no; |
| 1329 | j++; |
| 1330 | } |
| 1331 | if (!(((fsm1+i)->target == -1) && ((fsm1+i)->final_state == 1))) { |
| 1332 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, (fsm1+i)->in, (fsm1+i)->out, (fsm1+i)->target, 0, (fsm1+i)->start_state); |
| 1333 | j++; |
| 1334 | } |
| 1335 | } |
| 1336 | |
| 1337 | for(i=0; (fsm2+i)->state_no != -1; i++, j++) { |
| 1338 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no, (fsm2+i)->in, (fsm2+i)->out, (fsm2+i)->target, (fsm2+i)->final_state, 0); |
| 1339 | } |
| 1340 | add_fsm_arc(new_fsm, j, -1, -1, -1, -1, -1, -1); |
| 1341 | free(net1->states); |
| 1342 | fsm_destroy(net2); |
| 1343 | net1->states = new_fsm; |
| 1344 | if (sigma_find_number(EPSILON0, net1->sigma) == -1) { |
| 1345 | sigma_add_special(EPSILON0, net1->sigma); |
| 1346 | } |
| 1347 | fsm_count(net1); |
| 1348 | net1->is_epsilon_free = NO0; |
| 1349 | net1->is_deterministic = NO0; |
| 1350 | net1->is_minimized = NO0; |
| 1351 | net1->is_pruned = NO0; |
| 1352 | return(fsm_minimize(net1)); |
| 1353 | } |
| 1354 | |
| 1355 | struct fsm *fsm_union(struct fsm *net1, struct fsm *net2) { |
| 1356 | struct fsm_state *new_fsm, *fsm1, *fsm2; |
| 1357 | int i, j, net1_offset, net2_offset, new_target, arccount; |
| 1358 | |
| 1359 | fsm_merge_sigma(net1, net2); |
| 1360 | |
| 1361 | fsm_count(net1); |
| 1362 | fsm_count(net2); |
| 1363 | |
| 1364 | fsm1 = net1->states; |
| 1365 | fsm2 = net2->states; |
| 1366 | |
| 1367 | net1_offset = 1; |
| 1368 | net2_offset = net1->statecount + 1; |
| 1369 | new_fsm = malloc((net1->linecount + net2->linecount + 2) * sizeof(struct fsm_state)); |
| 1370 | |
| 1371 | j = 0; |
| 1372 | |
| 1373 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, net1_offset, 0 , 1); |
| 1374 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, net2_offset, 0 , 1); |
| 1375 | arccount = 2; |
| 1376 | for (i=0 ; (fsm1+i)->state_no != -1; i++) { |
| 1377 | new_target = (fsm1+i)->target == -1 ? -1 : (fsm1+i)->target + net1_offset; |
| 1378 | add_fsm_arc(new_fsm, j++, (fsm1+i)->state_no + net1_offset, (fsm1+i)->in, (fsm1+i)->out, new_target, (fsm1+i)->final_state, 0); |
| 1379 | if (new_target != -1) arccount++; |
| 1380 | } |
| 1381 | for (i=0 ; (fsm2+i)->state_no != -1; i++) { |
| 1382 | new_target = (fsm2+i)->target == -1 ? -1 : (fsm2+i)->target + net2_offset; |
| 1383 | add_fsm_arc(new_fsm, j++, (fsm2+i)->state_no + net2_offset, (fsm2+i)->in, (fsm2+i)->out, new_target, (fsm2+i)->final_state, 0); |
| 1384 | if (new_target != -1) arccount++; |
| 1385 | } |
| 1386 | add_fsm_arc(new_fsm, j++, -1, -1, -1, -1, -1, -1); |
| 1387 | free(net1->states); |
| 1388 | net1->states = new_fsm; |
| 1389 | net1->statecount = net1->statecount + net2->statecount + 1; |
| 1390 | net1->linecount = j; |
| 1391 | net1->arccount = arccount; |
| 1392 | net1->finalcount = net1->finalcount + net2->finalcount; |
| 1393 | fsm_destroy(net2); |
| 1394 | fsm_update_flags(net1,NO0,NO0,NO0,NO0,UNK2,NO0); |
| 1395 | if (sigma_find_number(EPSILON0, net1->sigma) == -1) { |
| 1396 | sigma_add_special(EPSILON0, net1->sigma); |
| 1397 | } |
| 1398 | return(net1); |
| 1399 | } |
| 1400 | |
| 1401 | struct fsm *fsm_completes(struct fsm *net, int operation) { |
| 1402 | struct fsm_state *fsm, *new_fsm; |
| 1403 | int i, j, offset, statecount, sigsize, *state_table, sink_state, target, last_sigma = 0, arccount = 0, incomplete; |
| 1404 | short *starts, *finals, *sinks; |
| 1405 | |
| 1406 | /* TODO: this currently relies on that the sigma is gap-free in its numbering */ |
| 1407 | /* which can't always be counted on, especially when reading external machines */ |
| 1408 | |
| 1409 | /* TODO: check arity */ |
| 1410 | |
| 1411 | if (net->is_minimized != YES1) |
| 1412 | net = fsm_minimize(net); |
| 1413 | |
| 1414 | incomplete = 0; |
| 1415 | fsm = net->states; |
| 1416 | if (sigma_find_number(UNKNOWN1, net->sigma) != -1) { |
| 1417 | sigma_remove("@_UNKNOWN_SYMBOL_@",net->sigma); |
| 1418 | } |
| 1419 | if (sigma_find_number(IDENTITY2, net->sigma) == -1) { |
| 1420 | sigma_add_special(IDENTITY2, net->sigma); |
| 1421 | incomplete = 1; |
| 1422 | } |
| 1423 | |
| 1424 | sigsize = sigma_size(net->sigma); |
| 1425 | last_sigma = sigma_max(net->sigma); |
| 1426 | |
| 1427 | if (sigma_find_number(EPSILON0, net->sigma) != -1) |
| 1428 | sigsize--; |
| 1429 | |
| 1430 | fsm_count(net); |
| 1431 | statecount = net->statecount; |
| 1432 | starts = malloc(sizeof(short)*(statecount+1)); /* +1 for sink state */ |
| 1433 | finals = malloc(sizeof(short)*(statecount+1)); |
| 1434 | sinks = malloc(sizeof(short)*(statecount+1)); |
| 1435 | |
| 1436 | /* Init starts, finals, sinks arrays */ |
| 1437 | |
| 1438 | for (i=0; i < statecount; i++) { |
| 1439 | *(sinks+i) = 1; |
| 1440 | *(finals+i) = 0; |
| 1441 | *(starts+i) = 0; |
| 1442 | } |
| 1443 | for (i=0; (fsm+i)->state_no != -1; i++) { |
| 1444 | if (operation == COMPLEMENT0) { |
| 1445 | if ((fsm+i)->final_state == 1) { |
| 1446 | (fsm+i)->final_state = 0; |
| 1447 | } else if ((fsm+i)->final_state == 0) { |
| 1448 | (fsm+i)->final_state = 1; |
| 1449 | } |
| 1450 | } |
| 1451 | if ((fsm+i)->target != -1) |
| 1452 | arccount++; |
| 1453 | starts[(fsm+i)->state_no] = (fsm+i)->start_state; |
| 1454 | finals[(fsm+i)->state_no] = (fsm+i)->final_state; |
| 1455 | if ((fsm+i)->final_state && operation != COMPLEMENT0) |
| 1456 | *(sinks+((fsm+i)->state_no)) = 0; |
| 1457 | if ((fsm+i)->final_state == 0 && (operation == COMPLEMENT0)) |
| 1458 | *(sinks+((fsm+i)->state_no)) = 0; |
| 1459 | if (((fsm+i)->target != -1) && ((fsm+i)->state_no != (fsm+i)->target)) |
| 1460 | *(sinks+((fsm+i)->state_no)) = 0; |
| 1461 | } |
| 1462 | |
| 1463 | net->is_loop_free = NO0; |
| 1464 | net->pathcount = PATHCOUNT_CYCLIC-1; |
| 1465 | |
| 1466 | if (incomplete == 0 && (arccount == (sigsize)*statecount)) { |
| 1467 | /* printf("Already complete!\n"); */ |
| 1468 | |
| 1469 | /* if (operation == COMPLEMENT) { */ |
| 1470 | /* for (i=0; (fsm+i)->state_no != -1; i++) { */ |
| 1471 | /* if ((fsm+i)->final_state) { */ |
| 1472 | /* (fsm+i)->final_state = 0; */ |
| 1473 | /* } else { */ |
| 1474 | /* (fsm+i)->final_state = 1; */ |
| 1475 | /* } */ |
| 1476 | /* } */ |
| 1477 | /* } */ |
| 1478 | free(starts); |
| 1479 | free(finals); |
| 1480 | free(sinks); |
| 1481 | net->is_completed = YES1; |
| 1482 | net->is_minimized = YES1; |
| 1483 | net->is_pruned = NO0; |
| 1484 | net->is_deterministic = YES1; |
| 1485 | return(net); |
| 1486 | } |
| 1487 | |
| 1488 | /* Find an existing sink state, or invent a new one */ |
| 1489 | |
| 1490 | for (i=0, sink_state = -1; i<statecount; i++) { |
| 1491 | if (sinks[i] == 1) { |
| 1492 | sink_state = i; |
| 1493 | break; |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | if (sink_state == -1) { |
| 1498 | sink_state = statecount; |
| 1499 | *(starts+sink_state) = 0; |
| 1500 | if (operation == COMPLEMENT0) { |
| 1501 | *(finals+sink_state) = 1; |
| 1502 | } else { |
| 1503 | *(finals+sink_state) = 0; |
| 1504 | } |
| 1505 | statecount++; |
| 1506 | } |
| 1507 | |
| 1508 | |
| 1509 | /* We can build a state table without memory problems since the size */ |
| 1510 | /* of the completed machine will be |Sigma| * |States| in all cases */ |
| 1511 | |
| 1512 | sigsize += 2; |
| 1513 | |
| 1514 | state_table = malloc(sizeof(int)*sigsize*statecount); |
| 1515 | |
| 1516 | /* Init state table */ |
| 1517 | /* i = state #, j = sigma # */ |
| 1518 | for (i=0; i<statecount; i++) { |
| 1519 | for (j=0; j<sigsize; j++) { |
| 1520 | *(state_table+(i*sigsize+j)) = -1; |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | for (i=0; (fsm+i)->state_no != -1; i++) { |
| 1525 | if ((fsm+i)->target != -1) { |
| 1526 | *(state_table+(((fsm+i)->state_no)*sigsize+((fsm+i)->in))) = (fsm+i)->target; |
| 1527 | } |
| 1528 | } |
| 1529 | /* Add looping arcs from and to sink state */ |
| 1530 | for (j=2; j<=last_sigma; j++) |
| 1531 | *(state_table+(sink_state*sigsize+j)) = sink_state; |
| 1532 | /* Add missing arcs to sink state from all states */ |
| 1533 | for (i=0; i<statecount; i++) { |
| 1534 | for (j=2; j<=last_sigma; j++) { |
| 1535 | if (*(state_table+(i*sigsize+j)) == -1) |
| 1536 | *(state_table+(i*sigsize+j)) = sink_state; |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | new_fsm = malloc(sizeof(struct fsm_state)*(sigsize*statecount+1)); |
| 1541 | |
| 1542 | /* Complement requires toggling final, nonfinal states */ |
| 1543 | /* if (operation == COMPLEMENT) */ |
| 1544 | /* for (i=0; i < statecount; i++) */ |
| 1545 | /* *(finals+i) = *(finals+i) == 0 ? 1 : 0; */ |
| 1546 | |
| 1547 | for (i=0, offset = 0; i<statecount; i++) { |
| 1548 | for (j=2; j<=last_sigma; j++) { |
| 1549 | target = *(state_table+(i*sigsize+j)) == -1 ? sink_state : *(state_table+(i*sigsize+j)); |
| 1550 | add_fsm_arc(new_fsm, offset, i, j, j, target, finals[i], starts[i]); |
| 1551 | offset++; |
| 1552 | } |
| 1553 | } |
| 1554 | add_fsm_arc(new_fsm, offset, -1, -1, -1, -1, -1, -1); |
| 1555 | offset++; |
| 1556 | free(net->states); |
| 1557 | net->states = new_fsm; |
| 1558 | free(starts); |
| 1559 | free(finals); |
| 1560 | free(sinks); |
| 1561 | free(state_table); |
| 1562 | net->is_minimized = NO0; |
| 1563 | net->is_pruned = NO0; |
| 1564 | net->is_completed = YES1; |
| 1565 | net->statecount = statecount; |
| 1566 | return(net); |
| 1567 | } |
| 1568 | |
| 1569 | struct fsm *fsm_complete(struct fsm *net) { |
| 1570 | return(fsm_completes(net, COMPLETE1)); |
| 1571 | } |
| 1572 | |
| 1573 | struct fsm *fsm_complement(struct fsm *net) { |
| 1574 | return(fsm_completes(net, COMPLEMENT0)); |
| 1575 | } |
| 1576 | |
| 1577 | struct fsm *fsm_kleene_closure(struct fsm *net, int operation) { |
| 1578 | struct fsm_state *fsm, *new_fsm; |
| 1579 | int i, j, laststate, curr_state, curr_target, arccount; |
| 1580 | |
| 1581 | if (operation == OPTIONALITY2) { |
| 1582 | return(fsm_union(net,fsm_empty_string())); |
| 1583 | } |
| 1584 | |
| 1585 | net = fsm_minimize(net); |
| 1586 | fsm_count(net); |
| 1587 | |
| 1588 | fsm = net->states; |
| 1589 | |
| 1590 | new_fsm = malloc( (net->linecount + net->finalcount + 1) * sizeof(struct fsm_state)); |
| 1591 | |
| 1592 | j = 0; |
| 1593 | if (operation == KLEENE_STAR0) |
| 1594 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, 1, 1, 1); |
| 1595 | if (operation == KLEENE_PLUS1) |
| 1596 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, 1, 0, 1); |
| 1597 | laststate = 0; |
| 1598 | arccount = 1; |
| 1599 | for (i = 0 ; (fsm+i)->state_no != -1; i++, laststate = curr_state) { |
| 1600 | curr_state = (fsm+i)->state_no + 1; |
| 1601 | curr_target = (fsm+i)->target == -1 ? -1 : (fsm+i)->target + 1; |
| 1602 | if (curr_target == -1 && (fsm+i)->final_state == 1) { |
| 1603 | add_fsm_arc(new_fsm, j++, curr_state, EPSILON0, EPSILON0, 0, 1, 0); |
| 1604 | arccount++; |
| 1605 | continue; |
| 1606 | } |
| 1607 | if (curr_state != laststate && (fsm+i)->final_state == 1) { |
| 1608 | arccount++; |
| 1609 | add_fsm_arc(new_fsm, j++, curr_state, EPSILON0, EPSILON0, 0, 1, 0); |
| 1610 | } |
| 1611 | add_fsm_arc(new_fsm, j++, curr_state, (fsm+i)->in, (fsm+i)->out, curr_target, (fsm+i)->final_state, 0); |
| 1612 | if (curr_target != -1) arccount++; |
| 1613 | } |
| 1614 | add_fsm_arc(new_fsm, j++, -1,-1,-1,-1,-1,-1); |
| 1615 | net->statecount = net->statecount+1; |
| 1616 | net->linecount = j; |
| 1617 | net->finalcount = operation == KLEENE_STAR0 ? net->finalcount+1 : net->finalcount; |
| 1618 | net->arccount = arccount; |
| 1619 | net->pathcount = PATHCOUNT_UNKNOWN-3; |
| 1620 | free(net->states); |
| 1621 | net->states = new_fsm; |
| 1622 | if (sigma_find_number(EPSILON0, net->sigma) == -1) |
| 1623 | sigma_add_special(EPSILON0, net->sigma); |
| 1624 | fsm_update_flags(net,NO0,NO0,NO0,NO0,UNK2,NO0); |
| 1625 | return(net); |
| 1626 | } |
| 1627 | |
| 1628 | char *fsm_network_to_char(struct fsm *net) { |
| 1629 | struct sigma *sigma, *sigprev; |
| 1630 | sigma = net->sigma; |
| 1631 | if (sigma->number == -1) { |
| 1632 | return NULL((void*)0); |
| 1633 | } |
| 1634 | for (; sigma != NULL((void*)0) && sigma->number != -1 ; sigma = sigma->next) { |
| 1635 | sigprev = sigma; |
| 1636 | } |
| 1637 | return(strdup(sigprev->symbol)); |
| 1638 | } |
| 1639 | |
| 1640 | struct fsm *fsm_substitute_label(struct fsm *net, char *original, struct fsm *substitute) { |
| 1641 | |
| 1642 | struct fsm *outnet, *subnet2; |
| 1643 | struct fsm_read_handle *inh, *subh, *subh2; |
| 1644 | struct fsm_construct_handle *outh; |
| 1645 | char *subin, *subout; |
| 1646 | int i, repsym, source, target, in, out, addstate1, addstate2; |
| 1647 | |
| 1648 | fsm_merge_sigma(net, substitute); |
| 1649 | addstate1 = net->statecount; |
| 1650 | addstate2 = substitute->statecount; |
| 1651 | |
| 1652 | inh = fsm_read_init(net); |
| 1653 | subh = fsm_read_init(substitute); |
| 1654 | repsym = fsm_get_symbol_number(inh, original); |
| 1655 | if (repsym == -1) { |
| 1656 | fsm_read_done(inh); |
| 1657 | return(net); |
| 1658 | } |
| 1659 | outh = fsm_construct_init(net->name); |
| 1660 | fsm_construct_copy_sigma(outh, net->sigma); |
| 1661 | while (fsm_get_next_arc(inh)) { |
| 1662 | source = fsm_get_arc_source(inh); |
| 1663 | target = fsm_get_arc_target(inh); |
| 1664 | in = fsm_get_arc_num_in(inh); |
| 1665 | out = fsm_get_arc_num_out(inh); |
| 1666 | |
| 1667 | /* Double-sided arc, splice in substitute network */ |
| 1668 | if (in == repsym && out == repsym) { |
| 1669 | fsm_read_reset(subh); |
| 1670 | fsm_construct_add_arc_nums(outh, source, addstate1, EPSILON0, EPSILON0); |
| 1671 | while (fsm_get_next_arc(subh)) { |
| 1672 | source = fsm_get_arc_source(subh); |
| 1673 | target = fsm_get_arc_target(subh); |
| 1674 | subin = fsm_get_arc_in(subh); |
| 1675 | subout = fsm_get_arc_out(subh); |
| 1676 | fsm_construct_add_arc(outh, source+addstate1, target+addstate1, subin, subout); |
| 1677 | } |
| 1678 | while ((i = fsm_get_next_final(subh)) != -1) { |
| 1679 | target = fsm_get_arc_target(inh); |
| 1680 | fsm_construct_add_arc_nums(outh, addstate1+i, target, EPSILON0, EPSILON0); |
| 1681 | } |
| 1682 | addstate1 = addstate1 + addstate2; |
| 1683 | /* One-sided replace, splice in repsym .x. sub or sub .x. repsym */ |
| 1684 | } else if (in == repsym || out == repsym) { |
| 1685 | if (in == repsym) { |
| 1686 | subnet2 = fsm_minimize(fsm_cross_product(fsm_copy(substitute), fsm_symbol(fsm_get_arc_out(inh)))); |
| 1687 | } else { |
| 1688 | subnet2 = fsm_minimize(fsm_cross_product(fsm_symbol(fsm_get_arc_in(inh)),fsm_copy(substitute))); |
| 1689 | } |
| 1690 | fsm_construct_add_arc_nums(outh, source, addstate1, EPSILON0, EPSILON0); |
| 1691 | subh2 = fsm_read_init(subnet2); |
| 1692 | while (fsm_get_next_arc(subh2)) { |
| 1693 | source = fsm_get_arc_source(subh2); |
| 1694 | target = fsm_get_arc_target(subh2); |
| 1695 | subin = fsm_get_arc_in(subh2); |
| 1696 | subout = fsm_get_arc_out(subh2); |
| 1697 | fsm_construct_add_arc(outh, source+addstate1, target+addstate1, subin, subout); |
| 1698 | } |
| 1699 | while ((i = fsm_get_next_final(subh2)) != -1) { |
| 1700 | target = fsm_get_arc_target(inh); |
| 1701 | fsm_construct_add_arc_nums(outh, addstate1+i, target, EPSILON0, EPSILON0); |
| 1702 | } |
| 1703 | fsm_read_done(subh2); |
| 1704 | addstate1 = addstate1 + subnet2->statecount; |
| 1705 | fsm_destroy(subnet2); |
| 1706 | } else { |
| 1707 | /* Default, just copy arc */ |
| 1708 | fsm_construct_add_arc_nums(outh, source, target, in, out); |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 1713 | fsm_construct_set_final(outh, i); |
| 1714 | } |
| 1715 | while ((i = fsm_get_next_initial(inh)) != -1) { |
| 1716 | fsm_construct_set_initial(outh, i); |
| 1717 | } |
| 1718 | fsm_read_done(inh); |
| 1719 | fsm_read_done(subh); |
| 1720 | outnet = fsm_construct_done(outh); |
| 1721 | return(outnet); |
| 1722 | } |
| 1723 | |
| 1724 | struct fsm *fsm_substitute_symbol(struct fsm *net, char *original, char *substitute) { |
| 1725 | struct fsm_state *fsm; |
| 1726 | int i,o,s = EPSILON0; |
| 1727 | if (strcmp(original,substitute) == 0) |
| 1728 | return(net); |
| 1729 | if ((o = sigma_find(original, net->sigma)) == -1) { |
| 1730 | //fprintf(stderr, "\nSymbol '%s' not found in network!\n", original); |
| 1731 | return(net); |
| 1732 | } |
| 1733 | if (strcmp(substitute,"0") == 0) |
| 1734 | s = EPSILON0; |
| 1735 | else if (substitute != NULL((void*)0) && (s = sigma_find(substitute, net->sigma)) == -1) { |
| 1736 | s = sigma_add(substitute, net->sigma); |
| 1737 | } |
| 1738 | for (i=0, fsm = net->states; (fsm+i)->state_no != -1; i++) { |
| 1739 | if ((fsm+i)->in == o) { |
| 1740 | (fsm+i)->in = s; |
| 1741 | } |
| 1742 | if ((fsm+i)->out == o) { |
| 1743 | (fsm+i)->out = s; |
| 1744 | } |
| 1745 | } |
| 1746 | net->sigma = sigma_remove(original, net->sigma); |
| 1747 | sigma_sort(net); |
| 1748 | fsm_update_flags(net, NO0, NO0, NO0, NO0, NO0, NO0); |
| 1749 | sigma_cleanup(net,0); |
| 1750 | /* if s = epsilon */ |
| 1751 | net->is_minimized = NO0; |
| 1752 | return(fsm_determinize(net)); |
| 1753 | } |
| 1754 | |
| 1755 | struct fsm *fsm_cross_product(struct fsm *net1, struct fsm *net2) { |
| 1756 | int i, a, b, current_state, current_start, current_final, target_number, symbol1, symbol2, epsilon = 0, unknown = 0; |
| 1757 | struct fsm_state *machine_a, *machine_b, *fsm; |
| 1758 | struct state_arr *point_a, *point_b; |
| 1759 | struct triplethash *th; |
| 1760 | |
| 1761 | /* Perform a cross product by running two machines in parallel */ |
| 1762 | /* The approach here allows a state to stay, creating a a:0 or 0:b transition */ |
| 1763 | /* with the a/b-state waiting, and the arc going to {a,stay} or {stay,b} */ |
| 1764 | /* the wait maneuver is only possible if the waiting state is final */ |
| 1765 | |
| 1766 | /* For the rewrite rules compilation, a different cross-product is used: */ |
| 1767 | /* rewrite_cp() synchronizes A and B as long as possible to get a unique */ |
| 1768 | /* output match for each cross product. */ |
| 1769 | |
| 1770 | /* This behavior where we postpone zeroes on either side and perform */ |
| 1771 | /* and equal length cross-product as long as possible and never intermix */ |
| 1772 | /* ?:0 and 0:? arcs (i.e. we keep both machines synchronized as long as possible */ |
| 1773 | /* can be done by [A .x. B] & ?:?* [?:0*|0:?*] at the cost of possibly */ |
| 1774 | /* up to three times larger transducers. */ |
| 1775 | /* This is very similar to the idea in "tristate composition" in fsm_compose() */ |
| 1776 | |
| 1777 | /* This function is only used for explicit cross products */ |
| 1778 | /* such as a:b or A.x.B, etc. In rewrite rules, we use rewrite_cp() */ |
| 1779 | |
| 1780 | net1 = fsm_minimize(net1); |
| 1781 | net2 = fsm_minimize(net2); |
| 1782 | |
| 1783 | fsm_merge_sigma(net1, net2); |
| 1784 | |
| 1785 | fsm_count(net1); |
| 1786 | fsm_count(net2); |
| 1787 | |
| 1788 | machine_a = net1->states; |
| 1789 | machine_b = net2->states; |
| 1790 | |
| 1791 | /* new state 0 = {0,0} */ |
| 1792 | |
| 1793 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
| 1794 | |
| 1795 | th = triplet_hash_init(); |
| 1796 | triplet_hash_insert(th, 0, 0, 0); |
| 1797 | |
| 1798 | fsm_state_init(sigma_max(net1->sigma)); |
| 1799 | |
| 1800 | point_a = init_state_pointers(machine_a); |
| 1801 | point_b = init_state_pointers(machine_b); |
| 1802 | |
| 1803 | while (!int_stack_isempty()) { |
| 1804 | |
| 1805 | /* Get a pair of states to examine */ |
| 1806 | |
| 1807 | a = int_stack_pop(); |
| 1808 | b = int_stack_pop(); |
| 1809 | |
| 1810 | /* printf("Treating pair: {%i,%i}\n",a,b); */ |
| 1811 | |
| 1812 | current_state = triplet_hash_find(th, a, b, 0); |
| 1813 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1)) ? 1 : 0; |
| 1814 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
| 1815 | |
| 1816 | fsm_state_set_current_state(current_state, current_final, current_start); |
| 1817 | |
| 1818 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 1819 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
| 1820 | |
| 1821 | if ((machine_a->target == -1) && (machine_b->target == -1)) { |
| 1822 | continue; |
| 1823 | } |
| 1824 | if ((machine_a->target == -1) && (machine_a->final_state == 0)) { |
| 1825 | continue; |
| 1826 | } |
| 1827 | if ((machine_b->target == -1) && (machine_b->final_state == 0)) { |
| 1828 | continue; |
| 1829 | } |
| 1830 | /* Main check */ |
| 1831 | if (!((machine_a->target == -1) || (machine_b->target == -1))) { |
| 1832 | if ((target_number = triplet_hash_find(th, machine_a->target, machine_b->target, 0)) == -1) { |
| 1833 | STACK_2_PUSH(machine_b->target, machine_a->target)int_stack_push(machine_b->target); int_stack_push(machine_a ->target);; |
| 1834 | target_number = triplet_hash_insert(th, machine_a->target, machine_b->target, 0); |
| 1835 | } |
| 1836 | symbol1 = machine_a->in; |
| 1837 | symbol2 = machine_b->in; |
| 1838 | if (symbol1 == IDENTITY2 && symbol2 != IDENTITY2) |
| 1839 | symbol1 = UNKNOWN1; |
| 1840 | if (symbol2 == IDENTITY2 && symbol1 != IDENTITY2) |
| 1841 | symbol2 = UNKNOWN1; |
| 1842 | |
| 1843 | fsm_state_add_arc(current_state, symbol1, symbol2, target_number, current_final, current_start); |
| 1844 | /* @:@ -> @:@ and also ?:? */ |
| 1845 | if ((machine_a->in == IDENTITY2) && (machine_b->in == IDENTITY2)) { |
| 1846 | fsm_state_add_arc(current_state, UNKNOWN1, UNKNOWN1, target_number, current_final, current_start); |
| 1847 | } |
| 1848 | } |
| 1849 | if (machine_a->final_state == 1 && machine_b->target != -1) { |
| 1850 | |
| 1851 | /* Add 0:b i.e. stay in state A */ |
| 1852 | if ((target_number = triplet_hash_find(th, machine_a->state_no, machine_b->target, 0)) == -1) { |
| 1853 | STACK_2_PUSH(machine_b->target, machine_a->state_no)int_stack_push(machine_b->target); int_stack_push(machine_a ->state_no);; |
| 1854 | target_number = triplet_hash_insert(th, machine_a->state_no, machine_b->target, 0); |
| 1855 | } |
| 1856 | /* @:0 becomes ?:0 */ |
| 1857 | symbol2 = machine_b->in == IDENTITY2 ? UNKNOWN1 : machine_b->in; |
| 1858 | fsm_state_add_arc(current_state, EPSILON0, symbol2, target_number, current_final, current_start); |
| 1859 | } |
| 1860 | |
| 1861 | if (machine_b->final_state == 1 && machine_a->target != -1) { |
| 1862 | |
| 1863 | /* Add a:0 i.e. stay in state B */ |
| 1864 | if ((target_number = triplet_hash_find(th, machine_a->target, machine_b->state_no, 0)) == -1) { |
| 1865 | STACK_2_PUSH(machine_b->state_no, machine_a->target)int_stack_push(machine_b->state_no); int_stack_push(machine_a ->target);; |
| 1866 | target_number = triplet_hash_insert(th, machine_a->target, machine_b->state_no, 0); |
| 1867 | } |
| 1868 | /* @:0 becomes ?:0 */ |
| 1869 | symbol1 = machine_a->in == IDENTITY2 ? UNKNOWN1 : machine_a->in; |
| 1870 | fsm_state_add_arc(current_state, symbol1, EPSILON0, target_number, current_final, current_start); |
| 1871 | } |
| 1872 | } |
| 1873 | } |
| 1874 | /* Check arctrack */ |
| 1875 | fsm_state_end_state(); |
| 1876 | } |
| 1877 | |
| 1878 | free(net1->states); |
| 1879 | fsm_state_close(net1); |
| 1880 | |
| 1881 | for (i=0, fsm = net1->states; (fsm+i)->state_no != -1; i++) { |
| 1882 | if (((fsm+i)->in == EPSILON0) || ((fsm+i)->out == EPSILON0)) |
| 1883 | epsilon = 1; |
| 1884 | if (((fsm+i)->in == UNKNOWN1) || ((fsm+i)->out == UNKNOWN1)) |
| 1885 | unknown = 1; |
| 1886 | } |
| 1887 | if (epsilon == 1) { |
| 1888 | if (sigma_find_number(EPSILON0, net1->sigma) == -1) { |
| 1889 | sigma_add_special(EPSILON0, net1->sigma); |
| 1890 | } |
| 1891 | } |
| 1892 | if (unknown == 1) { |
| 1893 | if (sigma_find_number(UNKNOWN1, net1->sigma) == -1) { |
| 1894 | sigma_add_special(UNKNOWN1, net1->sigma); |
| 1895 | } |
| 1896 | } |
| 1897 | free(point_a); |
| 1898 | free(point_b); |
| 1899 | fsm_destroy(net2); |
| 1900 | triplet_hash_free(th); |
| 1901 | return(fsm_coaccessible(net1)); |
| 1902 | } |
| 1903 | |
| 1904 | struct fsm *fsm_precedes(struct fsm *net1, struct fsm *net2) { |
| 1905 | return(fsm_complement(fsm_minimize(fsm_contains(fsm_minimize(fsm_concat(fsm_minimize(fsm_copy(net2)),fsm_concat(fsm_universal(),fsm_minimize(fsm_copy(net1))))))))); |
| 1906 | } |
| 1907 | |
| 1908 | struct fsm *fsm_follows(struct fsm *net1, struct fsm *net2) { |
| 1909 | return(fsm_complement(fsm_minimize(fsm_contains(fsm_minimize(fsm_concat(fsm_minimize(fsm_copy(net1)),fsm_concat(fsm_universal(),fsm_minimize(fsm_copy(net2))))))))); |
| 1910 | } |
| 1911 | |
| 1912 | struct fsm *fsm_unflatten(struct fsm *net, char *epsilon_sym, char *repeat_sym) { |
| 1913 | int a, b, current_state, current_start, current_final, target_number, epsilon, repeat, in, out; |
| 1914 | struct fsm_state *even_state, *odd_state; |
| 1915 | struct state_arr *point_a; |
| 1916 | struct triplethash *th; |
| 1917 | |
| 1918 | fsm_minimize(net); |
| 1919 | fsm_count(net); |
| 1920 | |
| 1921 | epsilon = sigma_find(epsilon_sym, net->sigma); |
| 1922 | repeat = sigma_find(repeat_sym, net->sigma); |
| 1923 | |
| 1924 | even_state = net->states; |
| 1925 | |
| 1926 | /* new state 0 = {0,0} */ |
| 1927 | |
| 1928 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
| 1929 | |
| 1930 | th = triplet_hash_init(); |
| 1931 | triplet_hash_insert(th, 0, 0, 0); |
| 1932 | |
| 1933 | fsm_state_init(sigma_max(net->sigma)); |
| 1934 | |
| 1935 | point_a = init_state_pointers(even_state); |
| 1936 | |
| 1937 | while (!int_stack_isempty()) { |
| 1938 | |
| 1939 | /* Get a pair of states to examine */ |
| 1940 | |
| 1941 | a = int_stack_pop(); |
| 1942 | a = int_stack_pop(); |
| 1943 | |
| 1944 | /* printf("Treating pair: {%i,%i}\n",a,b); */ |
| 1945 | |
| 1946 | current_state = triplet_hash_find(th, a, a, 0); |
| 1947 | current_start = ((point_a+a)->start == 1) ? 1 : 0; |
| 1948 | current_final = ((point_a+a)->final == 1) ? 1 : 0; |
| 1949 | |
| 1950 | fsm_state_set_current_state(current_state, current_final, current_start); |
| 1951 | |
| 1952 | for (even_state = (point_a+a)->transitions; even_state->state_no == a; even_state++) { |
| 1953 | if (even_state->target == -1) { |
| 1954 | continue; |
| 1955 | } |
| 1956 | in = even_state->in; |
Value stored to 'in' is never read | |
| 1957 | b = even_state->target; |
| 1958 | for (odd_state = (point_a+b)->transitions; odd_state->state_no == b; odd_state++) { |
| 1959 | if (odd_state->target == -1) { |
| 1960 | continue; |
| 1961 | } |
| 1962 | if ((target_number = triplet_hash_find(th, odd_state->target, odd_state->target, 0)) == -1) { |
| 1963 | STACK_2_PUSH(odd_state->target, odd_state->target)int_stack_push(odd_state->target); int_stack_push(odd_state ->target);; |
| 1964 | target_number = triplet_hash_insert(th, odd_state->target, odd_state->target, 0); |
| 1965 | } |
| 1966 | in = even_state->in; |
| 1967 | out = odd_state->in; |
| 1968 | if (out == repeat) { |
| 1969 | out = in; |
| 1970 | } else if (in == IDENTITY2 || out == IDENTITY2) { |
| 1971 | in = in == IDENTITY2 ? UNKNOWN1 : in; |
| 1972 | out = out == IDENTITY2 ? UNKNOWN1 : out; |
| 1973 | } |
| 1974 | if (in == epsilon) { |
| 1975 | in = EPSILON0; |
| 1976 | } |
| 1977 | if (out == epsilon) { |
| 1978 | out = EPSILON0; |
| 1979 | } |
| 1980 | fsm_state_add_arc(current_state, in, out, target_number, current_final, current_start); |
| 1981 | } |
| 1982 | } |
| 1983 | fsm_state_end_state(); |
| 1984 | } |
| 1985 | free(net->states); |
| 1986 | fsm_state_close(net); |
| 1987 | free(point_a); |
| 1988 | triplet_hash_free(th); |
| 1989 | return(net); |
| 1990 | } |
| 1991 | |
| 1992 | |
| 1993 | struct fsm *fsm_shuffle(struct fsm *net1, struct fsm *net2) { |
| 1994 | int a, b, current_state, current_start, current_final, target_number; |
| 1995 | struct fsm_state *machine_a, *machine_b; |
| 1996 | struct state_arr *point_a, *point_b; |
| 1997 | struct triplethash *th; |
| 1998 | |
| 1999 | /* Shuffle A and B by making alternatively A move and B stay at each or */ |
| 2000 | /* vice versa at each step */ |
| 2001 | |
| 2002 | fsm_minimize(net1); |
| 2003 | fsm_minimize(net2); |
| 2004 | |
| 2005 | fsm_merge_sigma(net1, net2); |
| 2006 | |
| 2007 | fsm_count(net1); |
| 2008 | fsm_count(net2); |
| 2009 | |
| 2010 | machine_a = net1->states; |
| 2011 | machine_b = net2->states; |
| 2012 | |
| 2013 | /* new state 0 = {0,0} */ |
| 2014 | |
| 2015 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
| 2016 | |
| 2017 | th = triplet_hash_init(); |
| 2018 | triplet_hash_insert(th, 0, 0, 0); |
| 2019 | |
| 2020 | fsm_state_init(sigma_max(net1->sigma)); |
| 2021 | |
| 2022 | point_a = init_state_pointers(machine_a); |
| 2023 | point_b = init_state_pointers(machine_b); |
| 2024 | |
| 2025 | while (!int_stack_isempty()) { |
| 2026 | |
| 2027 | /* Get a pair of states to examine */ |
| 2028 | |
| 2029 | a = int_stack_pop(); |
| 2030 | b = int_stack_pop(); |
| 2031 | |
| 2032 | /* printf("Treating pair: {%i,%i}\n",a,b); */ |
| 2033 | |
| 2034 | current_state = triplet_hash_find(th, a, b, 0); |
| 2035 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1)) ? 1 : 0; |
| 2036 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
| 2037 | |
| 2038 | fsm_state_set_current_state(current_state, current_final, current_start); |
| 2039 | |
| 2040 | /* Follow A, B stays */ |
| 2041 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 2042 | if (machine_a->target == -1) { |
| 2043 | continue; |
| 2044 | } |
| 2045 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 0)) == -1) { |
| 2046 | STACK_2_PUSH(b, machine_a->target)int_stack_push(b); int_stack_push(machine_a->target);; |
| 2047 | target_number = triplet_hash_insert(th, machine_a->target, b, 0); |
| 2048 | } |
| 2049 | |
| 2050 | fsm_state_add_arc(current_state, machine_a->in, machine_a->out, target_number, current_final, current_start); |
| 2051 | } |
| 2052 | |
| 2053 | /* Follow B, A stays */ |
| 2054 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
| 2055 | |
| 2056 | if (machine_b->target == -1) { |
| 2057 | continue; |
| 2058 | } |
| 2059 | |
| 2060 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 0)) == -1) { |
| 2061 | STACK_2_PUSH(machine_b->target, a)int_stack_push(machine_b->target); int_stack_push(a);; |
| 2062 | target_number = triplet_hash_insert(th, a, machine_b->target, 0); |
| 2063 | } |
| 2064 | fsm_state_add_arc(current_state, machine_b->in, machine_b->out, target_number, current_final, current_start); |
| 2065 | } |
| 2066 | |
| 2067 | /* Check arctrack */ |
| 2068 | fsm_state_end_state(); |
| 2069 | } |
| 2070 | |
| 2071 | free(net1->states); |
| 2072 | fsm_state_close(net1); |
| 2073 | free(point_a); |
| 2074 | free(point_b); |
| 2075 | fsm_destroy(net2); |
| 2076 | triplet_hash_free(th); |
| 2077 | return(net1); |
| 2078 | } |
| 2079 | |
| 2080 | int fsm_equivalent(struct fsm *net1, struct fsm *net2) { |
| 2081 | /* Test path equivalence of two FSMs by traversing both in parallel */ |
| 2082 | int a, b, matching_arc, equivalent; |
| 2083 | struct fsm_state *machine_a, *machine_b; |
| 2084 | struct state_arr *point_a, *point_b; |
| 2085 | struct triplethash *th; |
| 2086 | |
| 2087 | fsm_merge_sigma(net1, net2); |
| 2088 | |
| 2089 | fsm_count(net1); |
| 2090 | fsm_count(net2); |
| 2091 | |
| 2092 | machine_a = net1->states; |
| 2093 | machine_b = net2->states; |
| 2094 | |
| 2095 | equivalent = 0; |
| 2096 | /* new state 0 = {0,0} */ |
| 2097 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
| 2098 | |
| 2099 | th = triplet_hash_init(); |
| 2100 | triplet_hash_insert(th, 0, 0, 0); |
| 2101 | |
| 2102 | point_a = init_state_pointers(machine_a); |
| 2103 | point_b = init_state_pointers(machine_b); |
| 2104 | |
| 2105 | while (!int_stack_isempty()) { |
| 2106 | |
| 2107 | /* Get a pair of states to examine */ |
| 2108 | |
| 2109 | a = int_stack_pop(); |
| 2110 | b = int_stack_pop(); |
| 2111 | |
| 2112 | if ((point_a+a)->final != (point_b+b)->final) { |
| 2113 | goto not_equivalent; |
| 2114 | } |
| 2115 | /* Check that all arcs in A have matching arc in B, push new state pair on stack */ |
| 2116 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 2117 | if (machine_a->target == -1) { |
| 2118 | break; |
| 2119 | } |
| 2120 | matching_arc = 0; |
| 2121 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
| 2122 | if (machine_b->target == -1) { |
| 2123 | break; |
| 2124 | } |
| 2125 | if (machine_a->in == machine_b->in && machine_a->out == machine_b->out) { |
| 2126 | matching_arc = 1; |
| 2127 | if ((triplet_hash_find(th, machine_a->target, machine_b->target, 0)) == -1) { |
| 2128 | STACK_2_PUSH(machine_b->target, machine_a->target)int_stack_push(machine_b->target); int_stack_push(machine_a ->target);; |
| 2129 | triplet_hash_insert(th, machine_a->target, machine_b->target, 0); |
| 2130 | } |
| 2131 | break; |
| 2132 | } |
| 2133 | } |
| 2134 | if (matching_arc == 0) { |
| 2135 | goto not_equivalent; |
| 2136 | } |
| 2137 | } |
| 2138 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
| 2139 | if (machine_b->target == -1) { |
| 2140 | break; |
| 2141 | } |
| 2142 | matching_arc = 0; |
| 2143 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 2144 | if (machine_a->in == machine_b->in && machine_a->out == machine_b->out) { |
| 2145 | matching_arc = 1; |
| 2146 | break; |
| 2147 | } |
| 2148 | } |
| 2149 | if (matching_arc == 0) { |
| 2150 | goto not_equivalent; |
| 2151 | } |
| 2152 | } |
| 2153 | } |
| 2154 | equivalent = 1; |
| 2155 | not_equivalent: |
| 2156 | fsm_destroy(net1); |
| 2157 | fsm_destroy(net2); |
| 2158 | free(point_a); |
| 2159 | free(point_b); |
| 2160 | triplet_hash_free(th); |
| 2161 | return(equivalent); |
| 2162 | } |
| 2163 | |
| 2164 | |
| 2165 | struct fsm *fsm_minus(struct fsm *net1, struct fsm *net2) { |
| 2166 | int a, b, current_state, current_start, current_final, target_number, b_has_trans, btarget, statecount; |
| 2167 | struct fsm_state *machine_a, *machine_b; |
| 2168 | struct state_arr *point_a, *point_b; |
| 2169 | struct triplethash *th; |
| 2170 | statecount = 0; |
| 2171 | |
| 2172 | net1 = fsm_minimize(net1); |
| 2173 | net2 = fsm_minimize(net2); |
| 2174 | |
| 2175 | fsm_merge_sigma(net1, net2); |
| 2176 | |
| 2177 | fsm_count(net1); |
| 2178 | fsm_count(net2); |
| 2179 | |
| 2180 | machine_a = net1->states; |
| 2181 | machine_b = net2->states; |
| 2182 | |
| 2183 | /* new state 0 = {1,1} */ |
| 2184 | |
| 2185 | int_stack_clear(); |
| 2186 | STACK_2_PUSH(1,1)int_stack_push(1); int_stack_push(1);; |
| 2187 | |
| 2188 | th = triplet_hash_init(); |
| 2189 | triplet_hash_insert(th, 1, 1, 0); |
| 2190 | |
| 2191 | point_a = init_state_pointers(machine_a); |
| 2192 | point_b = init_state_pointers(machine_b); |
| 2193 | |
| 2194 | fsm_state_init(sigma_max(net1->sigma)); |
| 2195 | |
| 2196 | while (!int_stack_isempty()) { |
| 2197 | statecount++; |
| 2198 | /* Get a pair of states to examine */ |
| 2199 | |
| 2200 | a = int_stack_pop(); |
| 2201 | b = int_stack_pop(); |
| 2202 | |
| 2203 | current_state = triplet_hash_find(th, a, b, 0); |
| 2204 | a--; |
| 2205 | b--; |
| 2206 | |
| 2207 | if (b == -1) { |
| 2208 | current_start = 0; |
| 2209 | current_final = (point_a+a)->final; |
| 2210 | } else { |
| 2211 | current_start = (a == 0 && b == 0) ? 1 : 0; |
| 2212 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 0)) ? 1 : 0; |
| 2213 | } |
| 2214 | |
| 2215 | fsm_state_set_current_state(current_state, current_final, current_start); |
| 2216 | |
| 2217 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
| 2218 | if (machine_a->target == -1) { |
| 2219 | break; |
| 2220 | continue; |
| 2221 | } |
| 2222 | if (b == -1) { |
| 2223 | /* b is dead */ |
| 2224 | if ((target_number = triplet_hash_find(th, (machine_a->target)+1, 0, 0)) == -1) { |
| 2225 | STACK_2_PUSH(0, (machine_a->target)+1)int_stack_push(0); int_stack_push((machine_a->target)+1);; |
| 2226 | target_number = triplet_hash_insert(th, (machine_a->target)+1, 0, 0); |
| 2227 | } |
| 2228 | } else { |
| 2229 | /* b is alive */ |
| 2230 | b_has_trans = 0; |
| 2231 | for (machine_b = (point_b+b)->transitions ; machine_b->state_no == b ; machine_b++) { |
| 2232 | if (machine_a->in == machine_b->in && machine_a->out == machine_b->out) { |
| 2233 | b_has_trans = 1; |
| 2234 | btarget = machine_b->target; |
| 2235 | break; |
| 2236 | } |
| 2237 | } |
| 2238 | if (b_has_trans) { |
| 2239 | if ((target_number = triplet_hash_find(th, (machine_a->target)+1, btarget+1, 0)) == -1) { |
| 2240 | STACK_2_PUSH(btarget+1, (machine_a->target)+1)int_stack_push(btarget+1); int_stack_push((machine_a->target )+1);; |
| 2241 | target_number = triplet_hash_insert(th, (machine_a->target)+1, (machine_b->target)+1, 0); |
| 2242 | } |
| 2243 | } else { |
| 2244 | /* b is dead */ |
| 2245 | if ((target_number = triplet_hash_find(th, (machine_a->target)+1, 0, 0)) == -1) { |
| 2246 | STACK_2_PUSH(0, (machine_a->target)+1)int_stack_push(0); int_stack_push((machine_a->target)+1);; |
| 2247 | target_number = triplet_hash_insert(th, (machine_a->target)+1, 0, 0); |
| 2248 | } |
| 2249 | } |
| 2250 | } |
| 2251 | fsm_state_add_arc(current_state, machine_a->in, machine_a->out, target_number, current_final, current_start); |
| 2252 | } |
| 2253 | fsm_state_end_state(); |
| 2254 | } |
| 2255 | |
| 2256 | free(net1->states); |
| 2257 | fsm_state_close(net1); |
| 2258 | free(point_a); |
| 2259 | free(point_b); |
| 2260 | fsm_destroy(net2); |
| 2261 | triplet_hash_free(th); |
| 2262 | return(fsm_minimize(net1)); |
| 2263 | } |
| 2264 | |
| 2265 | struct fsm *fsm_contains(struct fsm *net) { |
| 2266 | /* [?* A ?*] */ |
| 2267 | struct fsm *net2; |
| 2268 | |
| 2269 | net2 = fsm_concat(fsm_concat(fsm_universal(),net),fsm_universal()); |
| 2270 | return(net2); |
| 2271 | } |
| 2272 | |
| 2273 | struct fsm *fsm_universal() { |
| 2274 | struct fsm *net; |
| 2275 | int s; |
| 2276 | net = fsm_create(""); |
| 2277 | fsm_update_flags(net, YES1, YES1, YES1, YES1, NO0, NO0); |
| 2278 | net->states = malloc(sizeof(struct fsm_state)*2); |
| 2279 | s = sigma_add_special(IDENTITY2,net->sigma); |
| 2280 | add_fsm_arc(net->states, 0, 0, s, s, 0, 1, 1); |
| 2281 | add_fsm_arc(net->states, 1, -1, -1, -1, -1, -1, -1); |
| 2282 | net->arccount = 1; |
| 2283 | net->statecount = 1; |
| 2284 | net->linecount = 2; |
| 2285 | net->finalcount = 1; |
| 2286 | net->pathcount = PATHCOUNT_CYCLIC-1; |
| 2287 | return(net); |
| 2288 | } |
| 2289 | |
| 2290 | struct fsm *fsm_contains_one(struct fsm *net) { |
| 2291 | /* $A - $[[?+ A ?* & A ?*] | [A ?+ & A]] */ |
| 2292 | struct fsm *ret; |
| 2293 | ret = fsm_minus(fsm_contains(fsm_copy(net)),fsm_contains(fsm_union(fsm_intersect(fsm_concat(fsm_kleene_plus(fsm_identity()),fsm_concat(fsm_copy(net),fsm_universal())) , fsm_concat(fsm_copy(net),fsm_universal())),fsm_intersect(fsm_concat(fsm_copy(net),fsm_kleene_plus(fsm_identity())), fsm_copy(net))))); |
| 2294 | fsm_destroy(net); |
| 2295 | return(ret); |
| 2296 | } |
| 2297 | |
| 2298 | struct fsm *fsm_contains_opt_one(struct fsm *net) { |
| 2299 | /* $.A | ~$A */ |
| 2300 | struct fsm *ret; |
| 2301 | ret = fsm_union(fsm_contains_one(fsm_copy(net)),fsm_complement(fsm_contains(fsm_copy(net)))); |
| 2302 | fsm_destroy(net); |
| 2303 | return(ret); |
| 2304 | } |
| 2305 | |
| 2306 | struct fsm *fsm_simple_replace(struct fsm *net1, struct fsm *net2) { |
| 2307 | /* [~[?* [A-0] ?*] [A.x.B]]* ~[?* [A-0] ?*] */ |
| 2308 | |
| 2309 | struct fsm *UPlus, *ret; |
| 2310 | UPlus = fsm_minimize(fsm_kleene_plus(fsm_identity())); |
| 2311 | ret = fsm_concat(fsm_minimize(fsm_kleene_star(fsm_minimize(fsm_concat(fsm_complement(fsm_minimize(fsm_concat(fsm_concat(fsm_universal(),fsm_minimize(fsm_intersect(fsm_copy(net1),fsm_copy(UPlus)))),fsm_universal()))),fsm_minimize(fsm_cross_product(fsm_copy(net1),fsm_copy(net2))))))),fsm_minimize(fsm_complement(fsm_minimize(fsm_concat(fsm_concat(fsm_universal(), fsm_intersect(fsm_copy(net1),fsm_copy(UPlus))),fsm_universal()))))); |
| 2312 | fsm_destroy(net1); |
| 2313 | fsm_destroy(net2); |
| 2314 | fsm_destroy(UPlus); |
| 2315 | return(ret); |
| 2316 | } |
| 2317 | |
| 2318 | struct fsm *fsm_priority_union_upper(struct fsm *net1, struct fsm *net2) { |
| 2319 | /* A .P. B = A | [~[A.u] .o. B] */ |
| 2320 | struct fsm *ret; |
| 2321 | ret = fsm_union(fsm_copy(net1),fsm_compose(fsm_complement(fsm_upper(fsm_copy(net1))),net2)); |
| 2322 | fsm_destroy(net1); |
| 2323 | return(ret); |
| 2324 | } |
| 2325 | |
| 2326 | struct fsm *fsm_priority_union_lower(struct fsm *net1, struct fsm *net2) { |
| 2327 | /* A .p. B = A | B .o. ~[A.l] */ |
| 2328 | struct fsm *ret; |
| 2329 | ret = fsm_union(fsm_copy(net1),fsm_compose(net2,fsm_complement(fsm_lower(fsm_copy(net1))))); |
| 2330 | fsm_destroy(net1); |
| 2331 | return(ret); |
| 2332 | } |
| 2333 | |
| 2334 | struct fsm *fsm_lenient_compose(struct fsm *net1, struct fsm *net2) { |
| 2335 | /* A .O. B = [A .o. B] .P. B */ |
| 2336 | struct fsm *ret; |
| 2337 | ret = fsm_priority_union_upper(fsm_compose(fsm_copy(net1),net2),fsm_copy(net1)); |
| 2338 | fsm_destroy(net1); |
| 2339 | return(ret); |
| 2340 | } |
| 2341 | |
| 2342 | struct fsm *fsm_term_negation(struct fsm *net1) { |
| 2343 | return(fsm_intersect(fsm_identity(),fsm_complement(net1))); |
| 2344 | } |
| 2345 | |
| 2346 | struct fsm *fsm_quotient_interleave(struct fsm *net1, struct fsm *net2) { |
| 2347 | /* A/\/B = The set of strings you can interleave in B and get a string from A */ |
| 2348 | /* [B/[x \x* x] & A/x .o. [[[\x]:0]* (x:0 \x* x:0)]*].l */ |
| 2349 | struct fsm *Result; |
| 2350 | Result = fsm_lower(fsm_compose(fsm_intersect(fsm_ignore(net2,fsm_concat(fsm_symbol("@>@"),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol("@>@"))),fsm_symbol("@>@"))),OP_IGNORE_ALL1),fsm_ignore(net1,fsm_symbol("@>@"),OP_IGNORE_ALL1)),fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_cross_product(fsm_term_negation(fsm_symbol("@>@")),fsm_empty_string())),fsm_optionality(fsm_concat(fsm_cross_product(fsm_symbol("@>@"),fsm_empty_string()),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol("@>@"))),fsm_cross_product(fsm_symbol("@>@"),fsm_empty_string())))))))); |
| 2351 | |
| 2352 | Result->sigma = sigma_remove("@>@",Result->sigma); |
| 2353 | /* Could clean up sigma */ |
| 2354 | return(Result); |
| 2355 | } |
| 2356 | |
| 2357 | struct fsm *fsm_quotient_left(struct fsm *net1, struct fsm *net2) { |
| 2358 | /* A\\\B = [B .o. A:0 ?*].l; */ |
| 2359 | /* A\\\B = the set of suffixes you can add to A to get a string in B */ |
| 2360 | struct fsm *Result; |
| 2361 | Result = fsm_lower(fsm_compose(net2,fsm_concat(fsm_cross_product(net1,fsm_empty_string()),fsm_universal()))); |
| 2362 | return(Result); |
| 2363 | } |
| 2364 | |
| 2365 | struct fsm *fsm_quotient_right(struct fsm *net1, struct fsm *net2) { |
| 2366 | struct fsm *Result; |
| 2367 | |
| 2368 | /* A///B = [A .o. ?* B:0].l; */ |
| 2369 | /* A///B = the set of prefixes you can add to B to get strings in A */ |
| 2370 | Result = fsm_lower(fsm_compose(net1, fsm_concat(fsm_universal(),fsm_cross_product(net2,fsm_empty_string())))); |
| 2371 | return(Result); |
| 2372 | } |
| 2373 | |
| 2374 | struct fsm *fsm_ignore(struct fsm *net1, struct fsm *net2, int operation) { |
| 2375 | struct fsm_state *fsm1, *fsm2, *new_fsm; |
| 2376 | struct fsm *Result; |
| 2377 | short *handled_states1, *handled_states2; |
| 2378 | int i, j, k, state_add_counter = 0, malloc_size, splices = 0, returns, target, splice_size, start_splice, states1, states2, lines1, lines2, *return_state; |
| 2379 | |
| 2380 | net1 = fsm_minimize(net1); |
| 2381 | net2 = fsm_minimize(net2); |
| 2382 | |
| 2383 | if (fsm_isempty(net2)) { |
| 2384 | fsm_destroy(net2); |
| 2385 | return(net1); |
| 2386 | } |
| 2387 | fsm_merge_sigma(net1, net2); |
| 2388 | |
| 2389 | fsm_count(net1); |
| 2390 | fsm_count(net2); |
| 2391 | |
| 2392 | states1 = net1->statecount; |
| 2393 | states2 = net2->statecount; |
| 2394 | lines1 = net1->linecount; |
| 2395 | lines2 = net2->linecount; |
| 2396 | fsm1 = net1->states; |
| 2397 | fsm2 = net2->states; |
| 2398 | |
| 2399 | if (operation == OP_IGNORE_INTERNAL2) { |
| 2400 | Result = fsm_lower(fsm_compose(fsm_ignore(fsm_copy(net1),fsm_symbol("@i<@"),OP_IGNORE_ALL1),fsm_compose(fsm_complement(fsm_union(fsm_concat(fsm_symbol("@i<@"),fsm_universal()),fsm_concat(fsm_universal(),fsm_symbol("@i<@")))),fsm_simple_replace(fsm_symbol("@i<@"),fsm_copy(net2))))); |
| 2401 | Result->sigma = sigma_remove("@i<@",Result->sigma); |
| 2402 | fsm_destroy(net1); |
| 2403 | fsm_destroy(net2); |
| 2404 | return(Result); |
| 2405 | } |
| 2406 | |
| 2407 | malloc_size = lines1 + (states1 * (lines2 + net2->finalcount + 1)); |
| 2408 | new_fsm = malloc(sizeof(struct fsm_state)*(malloc_size+1)); |
| 2409 | |
| 2410 | /* Mark if a state has been handled with ignore */ |
| 2411 | handled_states1 = malloc(sizeof(short)*states1); |
| 2412 | handled_states2 = malloc(sizeof(short)*states2); |
| 2413 | |
| 2414 | /* Mark which ignores return to which state */ |
| 2415 | return_state = malloc(sizeof(int)*states1); |
| 2416 | splice_size = states2; |
| 2417 | start_splice = states1; |
| 2418 | for (k=0; k<states1; k++) |
| 2419 | *(handled_states1+k) = 0; |
| 2420 | |
| 2421 | for (i=0, j=0; (fsm1+i)->state_no != -1; i++) { |
| 2422 | if (*(handled_states1+(fsm1+i)->state_no) == 0) { |
| 2423 | target = start_splice + splices * splice_size; |
| 2424 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, EPSILON0, EPSILON0, target, (fsm1+i)->final_state, (fsm1+i)->start_state); |
| 2425 | *(return_state+splices) = (fsm1+i)->state_no; |
| 2426 | *(handled_states1+(fsm1+i)->state_no) = 1; |
| 2427 | j++; |
| 2428 | splices++; |
| 2429 | if ((fsm1+i)->in != -1) { |
| 2430 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, (fsm1+i)->in, (fsm1+i)->out, (fsm1+i)->target, (fsm1+i)->final_state, (fsm1+i)->start_state); |
| 2431 | j++; |
| 2432 | } |
| 2433 | } else { |
| 2434 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, (fsm1+i)->in, (fsm1+i)->out, (fsm1+i)->target, (fsm1+i)->final_state, (fsm1+i)->start_state); |
| 2435 | j++; |
| 2436 | } |
| 2437 | } |
| 2438 | |
| 2439 | /* Add a sequence of fsm2s at the end, with arcs back to the appropriate states */ |
| 2440 | |
| 2441 | state_add_counter = start_splice; |
| 2442 | |
| 2443 | for (returns = 0; splices>0; splices--, returns++) { |
| 2444 | /* Zero handled return arc states */ |
| 2445 | |
| 2446 | for (k=0; k<states2; k++) |
| 2447 | *(handled_states2+k) = 0; |
| 2448 | |
| 2449 | for (i=0; (fsm2+i)->state_no != -1; i++) { |
| 2450 | if ((fsm2+i)->final_state == 1 && *(handled_states2+(fsm2+i)->state_no) == 0) { |
| 2451 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no + state_add_counter, EPSILON0, EPSILON0, *(return_state+returns), 0, 0); |
| 2452 | j++; |
| 2453 | *(handled_states2+(fsm2+i)->state_no) = 1; |
| 2454 | if ((fsm2+i)->target != -1) { |
| 2455 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no + state_add_counter, (fsm2+i)->in, (fsm2+i)->out , (fsm2+i)->target + state_add_counter, 0, 0); |
| 2456 | j++; |
| 2457 | } |
| 2458 | } else { |
| 2459 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no + state_add_counter, (fsm2+i)->in, (fsm2+i)->out, (fsm2+i)->target + state_add_counter, 0, 0); |
| 2460 | j++; |
| 2461 | } |
| 2462 | } |
| 2463 | state_add_counter = state_add_counter + states2; |
| 2464 | } |
| 2465 | |
| 2466 | add_fsm_arc(new_fsm, j, -1, -1, -1, -1, -1, -1); |
| 2467 | free(handled_states1); |
| 2468 | free(handled_states2); |
| 2469 | free(return_state); |
| 2470 | free(net1->states); |
| 2471 | fsm_destroy(net2); |
| 2472 | net1->states = new_fsm; |
| 2473 | fsm_update_flags(net1, NO0, NO0, NO0, NO0, NO0, NO0); |
| 2474 | fsm_count(net1); |
| 2475 | return(net1); |
| 2476 | } |
| 2477 | |
| 2478 | /* Remove those symbols from sigma that have the same distribution as IDENTITY */ |
| 2479 | |
| 2480 | void fsm_compact(struct fsm *net) { |
| 2481 | struct checktable { |
| 2482 | int state_no; |
| 2483 | int target; |
| 2484 | } *checktable; |
| 2485 | |
| 2486 | struct fsm_state *fsm; |
| 2487 | struct sigma *sig, *sigprev, *sign; |
| 2488 | _Bool *potential; |
| 2489 | int i, j, prevstate, numsymbols, in, out, state, target, removable; |
| 2490 | |
| 2491 | fsm = net->states; |
| 2492 | numsymbols = sigma_max(net->sigma); |
| 2493 | |
| 2494 | potential = malloc(sizeof(_Bool)*(numsymbols+1)); |
| 2495 | checktable = malloc(sizeof(struct checktable)*(numsymbols+1)); |
| 2496 | |
| 2497 | for (i=0; i <= numsymbols; i++) { |
| 2498 | *(potential+i) = 1; |
| 2499 | (checktable+i)->state_no = -1; |
| 2500 | (checktable+i)->target = -1; |
| 2501 | } |
| 2502 | /* For consistency reasons, can't remove symbols longer than 1 */ |
| 2503 | /* since @ and ? only match utf8 symbols of length 1 */ |
| 2504 | |
| 2505 | for (sig = net->sigma; sig != NULL((void*)0) && sig->number != -1; sig = sig->next) { |
| 2506 | if (utf8strlen(sig->symbol) > 1) { |
| 2507 | *(potential+sig->number) = 0; |
| 2508 | } |
| 2509 | } |
| 2510 | |
| 2511 | prevstate = 0; |
| 2512 | |
| 2513 | for (i=0; ; i++) { |
| 2514 | |
| 2515 | if ((fsm+i)->state_no != prevstate) { |
| 2516 | for (j=3; j<=numsymbols;j++) { |
| 2517 | if ((checktable+j)->state_no != prevstate && (checktable+IDENTITY2)->state_no != prevstate) { |
| 2518 | continue; |
| 2519 | } |
| 2520 | if ((checktable+j)->target == (checktable+IDENTITY2)->target && (checktable+j)->state_no == (checktable+IDENTITY2)->state_no) { |
| 2521 | continue; |
| 2522 | } |
| 2523 | *(potential+j) = 0; |
| 2524 | } |
| 2525 | } |
| 2526 | |
| 2527 | if ((fsm+i)->state_no == -1) |
| 2528 | break; |
| 2529 | |
| 2530 | in = (fsm+i)->in; |
| 2531 | out = (fsm+i)->out; |
| 2532 | state = (fsm+i)->state_no; |
| 2533 | target = (fsm+i)->target; |
| 2534 | |
| 2535 | if (in != -1 && out != -1) { |
| 2536 | if (((in == out && in > 2) || in == IDENTITY2)) { |
| 2537 | (checktable+in)->state_no = state; |
| 2538 | (checktable+in)->target = target; |
| 2539 | } |
| 2540 | if (in != out && in > 2) { |
| 2541 | *(potential+in) = 0; |
| 2542 | } |
| 2543 | if (in != out && out > 2) { |
| 2544 | *(potential+out) = 0; |
| 2545 | } |
| 2546 | } |
| 2547 | prevstate = state; |
| 2548 | } |
| 2549 | for (removable = 0, i=3; i <= numsymbols; i++) { |
| 2550 | if (*(potential+i) == 1) { |
| 2551 | removable = 1; |
| 2552 | } |
| 2553 | |
| 2554 | } |
| 2555 | if (removable == 0) { |
| 2556 | free(potential); |
| 2557 | free(checktable); |
| 2558 | return; |
| 2559 | } |
| 2560 | i = j = 0; |
| 2561 | do { |
| 2562 | in = (fsm+i)->in; |
| 2563 | |
| 2564 | add_fsm_arc(fsm, j ,(fsm+i)->state_no,(fsm+i)->in,(fsm+i)->out,(fsm+i)->target,(fsm+i)->final_state,(fsm+i)->start_state); |
| 2565 | if (in == -1) { |
| 2566 | i++; |
| 2567 | j++; |
| 2568 | } |
| 2569 | else if (*(potential+in) == 1 && in > 2) { |
| 2570 | i++; |
| 2571 | } else { |
| 2572 | i++; |
| 2573 | j++; |
| 2574 | } |
| 2575 | } while ((fsm+i)->state_no != -1); |
| 2576 | add_fsm_arc(fsm, j ,(fsm+i)->state_no,(fsm+i)->in,(fsm+i)->out,(fsm+i)->target,(fsm+i)->final_state,(fsm+i)->start_state); |
| 2577 | |
| 2578 | sigprev = NULL((void*)0); |
| 2579 | for (sig = net->sigma; sig != NULL((void*)0) && sig->number != -1; sig = sign) { |
| 2580 | |
| 2581 | if ((sig->number > 2) && (*(potential+sig->number) == 1)) { |
| 2582 | sigprev->next = sig->next; |
| 2583 | sign = sig->next; |
| 2584 | free(sig->symbol); |
| 2585 | free(sig); |
| 2586 | } else { |
| 2587 | sigprev = sig; |
| 2588 | sign = sig->next; |
| 2589 | } |
| 2590 | } |
| 2591 | free(potential); |
| 2592 | free(checktable); |
| 2593 | sigma_cleanup(net,0); |
| 2594 | } |
| 2595 | |
| 2596 | int fsm_symbol_occurs(struct fsm *net, char *symbol, int side) { |
| 2597 | struct fsm_state *fsm; |
| 2598 | int i, sym; |
| 2599 | sym = sigma_find(symbol, net->sigma); |
| 2600 | if (sym == -1) { |
| 2601 | return 0; |
| 2602 | } |
| 2603 | for (i=0, fsm = net->states; (fsm+i)->state_no != -1; i++) { |
| 2604 | if (side == M_UPPER1 && (fsm+i)->in == sym) |
| 2605 | return 1; |
| 2606 | if (side == M_LOWER2 && (fsm+i)->out == sym) |
| 2607 | return 1; |
| 2608 | if (side == (M_UPPER1 + M_LOWER2) && ( (fsm+i)->in == sym || (fsm+i)->out == sym)) |
| 2609 | return 1; |
| 2610 | } |
| 2611 | return 0; |
| 2612 | } |
| 2613 | |
| 2614 | struct fsm *fsm_equal_substrings(struct fsm *net, struct fsm *left, struct fsm *right) { |
| 2615 | |
| 2616 | /* The algorithm extracts from the lower side all and only those strings where */ |
| 2617 | /* every X occurring in different substrings ... left X right ... is identical. */ |
| 2618 | |
| 2619 | /* Caveat: there is no reliable termination condition for the loop that extracts */ |
| 2620 | /* identities. This means that if run on languages where there are potentially */ |
| 2621 | /* infinite-length identical delimited substrings, it will not terminate. */ |
| 2622 | |
| 2623 | /* For example: _eq(l a* r l a* r, l , r) will not terminate. */ |
| 2624 | |
| 2625 | /* However, even if the languages occuring between left and right are infinite */ |
| 2626 | /* the algorithm terminates eventually if the the possible combinations of */ |
| 2627 | /* identical substrings is finite in length. */ |
| 2628 | |
| 2629 | /* For example _eq([l a* b r l a b* r]*, l, r) does terminate even though */ |
| 2630 | /* it contains a potentially infinite number of delimited substrings since */ |
| 2631 | /* the maximum length of the possible identical delimited substrings is finite. */ |
| 2632 | |
| 2633 | /* In this case the above example evaluates to the language [l a b r l a b r]* */ |
| 2634 | |
| 2635 | /* The algorithm: */ |
| 2636 | /* Input: L, left, right */ |
| 2637 | /* Output: the language that preserves only those strings in L */ |
| 2638 | /* where X is the same for all left X right sequences */ |
| 2639 | |
| 2640 | /* 1. mark all instances of left with ... LB and right with RB ... in L */ |
| 2641 | |
| 2642 | /* 2. split L into Leq and Lbypass */ |
| 2643 | /* where Lbypass are all those strings where LB RB sequences aren't */ |
| 2644 | /* properly nested (we must have ... LB ... RB ... LB ... RB ... etc.) */ |
| 2645 | /* Lbypass also includes all those with less than two bracketed */ |
| 2646 | /* instances, since we don't need to check equality if there's only */ |
| 2647 | /* one bracketed substring. */ |
| 2648 | /* We also remove the auxiliary LB and RB symbols from Lbypass */ |
| 2649 | |
| 2650 | /* 3. We extract all the possible symbols occurring between LB and RB */ |
| 2651 | /* from Leq */ |
| 2652 | |
| 2653 | /* 4. We create the transducer Move from all symbols in (3) */ |
| 2654 | /* Move = M(sym_1) | ... | M(sym_n) */ |
| 2655 | /* where M(a) is defined as [\LB* LB:a a:LB]* \LB* */ |
| 2656 | /* i.e. it rewrites bracketed strings such as "LB a b RB LB a b RB" */ |
| 2657 | /* to "a LB b RB a LB b RB" in effect moving brackets to the right */ |
| 2658 | /* one step for a symbol. */ |
| 2659 | |
| 2660 | /* 5. Leq = Cleanup(Leq) */ |
| 2661 | /* Cleanup removes LB RB sequences and, at the same time filters out */ |
| 2662 | /* any strings where we find both LB RB and LB X RB where X is not 0. */ |
| 2663 | /* since we know such sequences could not possibly be identical */ |
| 2664 | /* Cleanup is implemented by composing Leq with */ |
| 2665 | /* \LB* [LB:0 RB:0 \LB*]* | ~$[LB RB] */ |
| 2666 | /* - if the symbol LB does not occur on the lower side of Leq, goto(6) */ |
| 2667 | /* - else Leq = Move(Leq), goto(5) */ |
| 2668 | |
| 2669 | /* 6. Result = L .o. [Leq | Lbypass] */ |
| 2670 | |
| 2671 | int syms; |
| 2672 | struct sigma *sig; |
| 2673 | struct fsm *LB, *RB, *NOLB, *NORB, *InsertBrackets, *RemoveBrackets, *Lbracketed, *NOBR, *BracketFilter, *Lbypass, *Leq, *Labels, *Cleanup, *ThisMove, *ThisSymbol, *Move, *Result, *oldnet; |
| 2674 | |
| 2675 | oldnet = fsm_copy(net); |
| 2676 | |
| 2677 | /* LB = "@<eq<@" */ |
| 2678 | /* RB = "@>eq>@" */ |
| 2679 | |
| 2680 | LB = fsm_symbol("@<eq<@"); |
| 2681 | NOLB = fsm_minimize(fsm_term_negation(fsm_copy(LB))); |
| 2682 | RB = fsm_symbol("@>eq>@"); |
| 2683 | NORB = fsm_minimize(fsm_term_negation(fsm_copy(RB))); |
| 2684 | /* NOBR = ~$[LB|RB] */ |
| 2685 | NOBR = fsm_minimize(fsm_complement(fsm_contains(fsm_union(fsm_copy(LB),fsm_copy(RB))))); |
| 2686 | |
| 2687 | sigma_add("@<eq<@", net->sigma); |
| 2688 | sigma_add("@>eq>@", net->sigma); |
| 2689 | sigma_sort(net); |
| 2690 | |
| 2691 | /* Insert our aux markers into the language */ |
| 2692 | |
| 2693 | /* InsertBrackets = [~$[L|R] [L 0:LB|0:RB R]]* ~$[L|R]; */ |
| 2694 | |
| 2695 | InsertBrackets = fsm_minimize(fsm_concat(fsm_kleene_star(fsm_concat(fsm_complement(fsm_contains(fsm_union(fsm_copy(left),fsm_copy(right)))),fsm_union(fsm_concat(fsm_copy(left),fsm_cross_product(fsm_empty_string(),fsm_copy(LB))),fsm_concat(fsm_cross_product(fsm_empty_string(),fsm_copy(RB)),fsm_copy(right))))),fsm_complement(fsm_contains(fsm_union(fsm_copy(left),fsm_copy(right)))))); |
| 2696 | |
| 2697 | |
| 2698 | /* Lbracketed = L .o. InsertBrackets */ |
| 2699 | |
| 2700 | Lbracketed = fsm_compose(fsm_copy(net), InsertBrackets); |
| 2701 | |
| 2702 | /* Filter out improper nestings, or languages with less than two marker pairs */ |
| 2703 | |
| 2704 | /* BracketFilter = NOBR LB NOBR RB NOBR [LB NOBR RB NOBR]+ */ |
| 2705 | |
| 2706 | BracketFilter = fsm_concat(fsm_copy(NOBR),fsm_concat(fsm_copy(LB),fsm_concat(fsm_copy(NOBR),fsm_concat(fsm_copy(RB),fsm_concat(fsm_copy(NOBR),fsm_kleene_plus(fsm_concat(fsm_copy(LB),fsm_concat(fsm_copy(NOBR),fsm_concat(fsm_copy(RB),fsm_copy(NOBR)))))))))); |
| 2707 | |
| 2708 | /* RemoveBrackets = [LB:0|RB:0|NOBR]* */ |
| 2709 | /* Lbypass = [Lbracketed .o. ~BracketFilter .o. LB|RB -> 0] */ |
| 2710 | /* Leq = [Lbracketed .o. BracketFilter] */ |
| 2711 | |
| 2712 | RemoveBrackets = fsm_kleene_star(fsm_union(fsm_cross_product(fsm_copy(LB),fsm_empty_string()),fsm_union(fsm_cross_product(fsm_copy(RB),fsm_empty_string()),fsm_copy(NOBR)))); |
| 2713 | |
| 2714 | |
| 2715 | Lbypass = fsm_lower(fsm_compose(fsm_copy(Lbracketed),fsm_compose(fsm_complement(fsm_copy(BracketFilter)),RemoveBrackets))); |
| 2716 | Leq = fsm_compose(Lbracketed, BracketFilter); |
| 2717 | |
| 2718 | /* Extract labels from lower side of L */ |
| 2719 | /* [Leq .o. [\LB:0* LB:0 \RB* RB:0]* \LB:0*].l */ |
| 2720 | |
| 2721 | Labels = fsm_sigma_pairs_net(fsm_lower(fsm_compose(fsm_copy(Leq),fsm_concat(fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_cross_product(fsm_copy(NOLB),fsm_empty_string())),fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_empty_string()),fsm_concat(fsm_kleene_star(fsm_copy(NORB)),fsm_cross_product(fsm_copy(RB),fsm_empty_string()))))),fsm_kleene_star(fsm_cross_product(fsm_copy(NOLB),fsm_empty_string())))))); |
| 2722 | |
| 2723 | /* Cleanup = \LB* [LB:0 RB:0 \LB*]* | ~$[LB RB] */ |
| 2724 | |
| 2725 | Cleanup = fsm_minimize(fsm_union(fsm_concat(fsm_kleene_star(fsm_copy(NOLB)),fsm_kleene_star(fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_empty_string()),fsm_concat(fsm_cross_product(fsm_copy(RB),fsm_empty_string()),fsm_kleene_star(fsm_copy(NOLB)))))),fsm_complement(fsm_contains(fsm_concat(fsm_copy(LB),fsm_copy(RB)))))); |
| 2726 | |
| 2727 | /* Construct the move function */ |
| 2728 | |
| 2729 | Move = fsm_empty_string(); |
| 2730 | |
| 2731 | syms = 0; |
| 2732 | for (sig = Labels->sigma; sig != NULL((void*)0); sig = sig->next) { |
| 2733 | /* Unclear which is faster: the first or the second version */ |
| 2734 | /* ThisMove = [\LB* LB:X X:LB]* \LB* */ |
| 2735 | /* ThisMove = [\LB* LB:0 X 0:LB]* \LB* */ |
| 2736 | if (sig->number >= 3) { |
| 2737 | ThisSymbol = fsm_symbol(sig->symbol); |
| 2738 | //ThisMove = fsm_concat(fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_copy(NOLB)),fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_copy(ThisSymbol)),fsm_cross_product(fsm_copy(ThisSymbol),fsm_copy(LB))))), fsm_kleene_star(fsm_copy(NOLB))); |
| 2739 | ThisMove = fsm_concat(fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_copy(NOLB)),fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_empty_string()), fsm_concat(fsm_copy(ThisSymbol), fsm_cross_product(fsm_empty_string(),fsm_copy(LB)))))), fsm_kleene_star(fsm_copy(NOLB))); |
| 2740 | |
| 2741 | Move = fsm_union(Move, ThisMove); |
| 2742 | syms++; |
| 2743 | } |
| 2744 | } |
| 2745 | Move = fsm_minimize(Move); |
| 2746 | if (syms == 0) { |
| 2747 | //printf("no syms"); |
| 2748 | fsm_destroy(net); |
| 2749 | return(oldnet); |
| 2750 | } |
| 2751 | |
| 2752 | /* Move until no bracket symbols remain */ |
| 2753 | for (;;) { |
| 2754 | //printf("Zapping\n"); |
| 2755 | Leq = fsm_compose(Leq, fsm_copy(Cleanup)); |
| 2756 | if (!fsm_symbol_occurs(Leq, "@<eq<@", M_LOWER2)) |
| 2757 | break; |
| 2758 | Leq = fsm_compose(Leq, fsm_copy(Move)); |
| 2759 | //Leq = fsm_minimize(fsm_compose(Leq, fsm_copy(Move))); |
| 2760 | // printf("size: %i\n",Leq->statecount); |
| 2761 | } |
| 2762 | |
| 2763 | /* Result = L .o. [Leq | Lbypass] */ |
| 2764 | Result = fsm_minimize(fsm_compose(net, fsm_union(fsm_lower(Leq), Lbypass))); |
| 2765 | sigma_remove("@<eq<@", Result->sigma); |
| 2766 | sigma_remove("@>eq>@", Result->sigma); |
| 2767 | fsm_compact(Result); |
| 2768 | sigma_sort(Result); |
| 2769 | fsm_destroy(oldnet); |
| 2770 | return(Result); |
| 2771 | } |
| 2772 | |
| 2773 | struct fsm *fsm_invert(struct fsm *net) { |
| 2774 | struct fsm_state *fsm; |
| 2775 | int i, temp; |
| 2776 | |
| 2777 | fsm = net->states; |
| 2778 | for (i = 0; (fsm+i)->state_no != -1; i++) { |
| 2779 | temp = (fsm+i)->in; |
| 2780 | (fsm+i)->in = (fsm+i)->out; |
| 2781 | (fsm+i)->out = temp; |
| 2782 | } |
| 2783 | i = net->arcs_sorted_in; |
| 2784 | net->arcs_sorted_in = net->arcs_sorted_out; |
| 2785 | net->arcs_sorted_out = i; |
| 2786 | return (net); |
| 2787 | } |
| 2788 | |
| 2789 | struct fsm *fsm_sequentialize(struct fsm *net) { |
| 2790 | printf("Implementation pending\n"); |
| 2791 | return(net); |
| 2792 | } |
| 2793 | |
| 2794 | |
| 2795 | struct fsm *fsm_bimachine(struct fsm *net) { |
| 2796 | printf("implementation pending\n"); |
| 2797 | return(net); |
| 2798 | } |
| 2799 | |
| 2800 | /* _leftrewr(L, a:b) does a -> b || .#. L _ */ |
| 2801 | /* _leftrewr(?* L, a:b) does a -> b || L _ */ |
| 2802 | /* works only with single symbols, but is fast */ |
| 2803 | |
| 2804 | struct fsm *fsm_left_rewr(struct fsm *net, struct fsm *rewr) { |
| 2805 | struct fsm_construct_handle *outh; |
| 2806 | struct fsm_read_handle *inh; |
| 2807 | struct fsm *newnet; |
| 2808 | int i, maxsigma, *sigmatable, currstate, sinkstate, seensource, innum, outnum, relabelin, relabelout, addedsink; |
| 2809 | |
| 2810 | fsm_merge_sigma(net, rewr); |
| 2811 | relabelin = rewr->states->in; |
| 2812 | relabelout = rewr->states->out; |
| 2813 | |
| 2814 | inh = fsm_read_init(net); |
| 2815 | sinkstate = fsm_get_num_states(inh); |
| 2816 | outh = fsm_construct_init(net->name); |
| 2817 | fsm_construct_copy_sigma(outh, net->sigma); |
| 2818 | maxsigma = sigma_max(net->sigma); |
| 2819 | maxsigma++; |
| 2820 | sigmatable = malloc(maxsigma * sizeof(int)); |
| 2821 | for (i = 0; i < maxsigma; i++) { |
| 2822 | *(sigmatable+i) = -1; |
| 2823 | } |
| 2824 | addedsink = 0; |
| 2825 | while ((currstate = fsm_get_next_state(inh)) != -1) { |
| 2826 | seensource = 0; |
| 2827 | fsm_construct_set_final(outh, currstate); |
| 2828 | |
| 2829 | while (fsm_get_next_state_arc(inh)) { |
| 2830 | innum = fsm_get_arc_num_in(inh); |
| 2831 | outnum = fsm_get_arc_num_out(inh); |
| 2832 | *(sigmatable+innum) = currstate; |
| 2833 | if (innum == relabelin) { |
| 2834 | seensource = 1; |
| 2835 | if (fsm_read_is_final(inh, currstate)) { |
| 2836 | outnum = relabelout; |
| 2837 | } |
| 2838 | } |
| 2839 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), innum, outnum); |
| 2840 | } |
| 2841 | for (i = 2; i < maxsigma; i++) { |
| 2842 | if (*(sigmatable+i) != currstate && i != relabelin) { |
| 2843 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, i, i); |
| 2844 | addedsink = 1; |
| 2845 | } |
| 2846 | } |
| 2847 | if (seensource == 0) { |
| 2848 | addedsink = 1; |
| 2849 | if (fsm_read_is_final(inh, currstate)) { |
| 2850 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, relabelin, relabelout); |
| 2851 | } else { |
| 2852 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, relabelin, relabelin); |
| 2853 | } |
| 2854 | } |
| 2855 | } |
| 2856 | if (addedsink) { |
| 2857 | for (i = 2; i < maxsigma; i++) { |
| 2858 | fsm_construct_add_arc_nums(outh, sinkstate, sinkstate, i, i); |
| 2859 | } |
| 2860 | fsm_construct_set_final(outh, sinkstate); |
| 2861 | } |
| 2862 | fsm_construct_set_initial(outh, 0); |
| 2863 | fsm_read_done(inh); |
| 2864 | newnet = fsm_construct_done(outh); |
| 2865 | free(sigmatable); |
| 2866 | fsm_destroy(net); |
| 2867 | fsm_destroy(rewr); |
| 2868 | return(newnet); |
| 2869 | } |
| 2870 | |
| 2871 | struct fsm *fsm_add_sink(struct fsm *net, int final) { |
| 2872 | struct fsm_construct_handle *outh; |
| 2873 | struct fsm_read_handle *inh; |
| 2874 | struct fsm *newnet; |
| 2875 | int i, maxsigma, *sigmatable, currstate, sinkstate; |
| 2876 | |
| 2877 | inh = fsm_read_init(net); |
| 2878 | sinkstate = fsm_get_num_states(inh); |
| 2879 | outh = fsm_construct_init(net->name); |
| 2880 | fsm_construct_copy_sigma(outh, net->sigma); |
| 2881 | maxsigma = sigma_max(net->sigma); |
| 2882 | maxsigma++; |
| 2883 | sigmatable = malloc(maxsigma * sizeof(int)); |
| 2884 | for (i = 0; i < maxsigma; i++) { |
| 2885 | *(sigmatable+i) = -1; |
| 2886 | } |
| 2887 | while ((currstate = fsm_get_next_state(inh)) != -1) { |
| 2888 | while (fsm_get_next_state_arc(inh)) { |
| 2889 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
| 2890 | *(sigmatable+fsm_get_arc_num_in(inh)) = currstate; |
| 2891 | } |
| 2892 | for (i = 2; i < maxsigma; i++) { |
| 2893 | if (*(sigmatable+i) != currstate) { |
| 2894 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, i, i); |
| 2895 | } |
| 2896 | } |
| 2897 | } |
| 2898 | for (i = 2; i < maxsigma; i++) { |
| 2899 | fsm_construct_add_arc_nums(outh, sinkstate, sinkstate, i, i); |
| 2900 | } |
| 2901 | |
| 2902 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 2903 | fsm_construct_set_final(outh, i); |
| 2904 | } |
| 2905 | if (final == 1) { |
| 2906 | fsm_construct_set_final(outh, sinkstate); |
| 2907 | } |
| 2908 | fsm_construct_set_initial(outh, 0); |
| 2909 | fsm_read_done(inh); |
| 2910 | newnet = fsm_construct_done(outh); |
| 2911 | fsm_destroy(net); |
| 2912 | return(newnet); |
| 2913 | } |
| 2914 | |
| 2915 | /* _addfinalloop(L, "#":0) adds "#":0 at all final states */ |
| 2916 | /* _addnonfinalloop(L, "#":0) adds "#":0 at all nonfinal states */ |
| 2917 | /* _addloop(L, "#":0) adds "#":0 at all states */ |
| 2918 | |
| 2919 | /* Adds loops at finals = 0 nonfinals, finals = 1 finals, finals = 2, all */ |
| 2920 | |
| 2921 | struct fsm *fsm_add_loop(struct fsm *net, struct fsm *marker, int finals) { |
| 2922 | struct fsm *newnet; |
| 2923 | struct fsm_construct_handle *outh; |
| 2924 | struct fsm_read_handle *inh, *minh; |
| 2925 | int i; |
| 2926 | |
| 2927 | inh = fsm_read_init(net); |
| 2928 | minh = fsm_read_init(marker); |
| 2929 | |
| 2930 | outh = fsm_construct_init(net->name); |
| 2931 | fsm_construct_copy_sigma(outh, net->sigma); |
| 2932 | |
| 2933 | while (fsm_get_next_arc(inh)) { |
| 2934 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
| 2935 | } |
| 2936 | /* Where to put the loops */ |
| 2937 | if (finals == 1) { |
| 2938 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 2939 | fsm_construct_set_final(outh, i); |
| 2940 | fsm_read_reset(minh); |
| 2941 | while (fsm_get_next_arc(minh)) { |
| 2942 | fsm_construct_add_arc(outh, i, i, fsm_get_arc_in(minh), fsm_get_arc_out(minh)); |
| 2943 | } |
| 2944 | } |
| 2945 | } else if (finals == 0 || finals == 2) { |
| 2946 | for (i=0; i < net->statecount; i++) { |
| 2947 | if (finals == 2 || !fsm_read_is_final(inh, i)) { |
| 2948 | fsm_read_reset(minh); |
| 2949 | while (fsm_get_next_arc(minh)) { |
| 2950 | fsm_construct_add_arc(outh, i, i, fsm_get_arc_in(minh), fsm_get_arc_out(minh)); |
| 2951 | } |
| 2952 | } |
| 2953 | } |
| 2954 | } |
| 2955 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 2956 | fsm_construct_set_final(outh, i); |
| 2957 | } |
| 2958 | fsm_construct_set_initial(outh, 0); |
| 2959 | fsm_read_done(inh); |
| 2960 | fsm_read_done(minh); |
| 2961 | newnet = fsm_construct_done(outh); |
| 2962 | fsm_destroy(net); |
| 2963 | return(newnet); |
| 2964 | } |
| 2965 | |
| 2966 | /* _marktail(?* L, 0:x) does ~$x .o. [..] -> x || L _ ; */ |
| 2967 | /* _marktail(?* R.r, 0:x).r does ~$x .o. [..] -> x || _ R */ |
| 2968 | |
| 2969 | struct fsm *fsm_mark_fsm_tail(struct fsm *net, struct fsm *marker) { |
| 2970 | struct fsm *newnet; |
| 2971 | struct fsm_construct_handle *outh; |
| 2972 | struct fsm_read_handle *inh, *minh; |
| 2973 | int i, *mappings, maxstate, target, newtarget; |
| 2974 | |
| 2975 | inh = fsm_read_init(net); |
| 2976 | minh = fsm_read_init(marker); |
| 2977 | |
| 2978 | outh = fsm_construct_init(net->name); |
| 2979 | fsm_construct_copy_sigma(outh, net->sigma); |
| 2980 | |
| 2981 | mappings = calloc(net->statecount, sizeof(int)); |
| 2982 | maxstate = net->statecount; |
| 2983 | |
| 2984 | while (fsm_get_next_arc(inh)) { |
| 2985 | target = fsm_get_arc_target(inh); |
| 2986 | if (fsm_read_is_final(inh, target)) { |
| 2987 | if (!*(mappings+target)) { |
| 2988 | newtarget = maxstate; |
| 2989 | *(mappings+target) = newtarget; |
| 2990 | fsm_read_reset(minh); |
| 2991 | while (fsm_get_next_arc(minh)) { |
| 2992 | fsm_construct_add_arc(outh, newtarget, target, fsm_get_arc_in(minh), fsm_get_arc_out(minh)); |
| 2993 | } |
| 2994 | maxstate++; |
| 2995 | } else { |
| 2996 | newtarget = *(mappings+target); |
| 2997 | } |
| 2998 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), newtarget, fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
| 2999 | } else { |
| 3000 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), target, fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
| 3001 | } |
| 3002 | } |
| 3003 | for (i=0; i < net->statecount; i++) { |
| 3004 | fsm_construct_set_final(outh,i); |
| 3005 | } |
| 3006 | |
| 3007 | fsm_construct_set_initial(outh, 0); |
| 3008 | fsm_read_done(inh); |
| 3009 | fsm_read_done(minh); |
| 3010 | newnet = fsm_construct_done(outh); |
| 3011 | fsm_destroy(net); |
| 3012 | free(mappings); |
| 3013 | return(newnet); |
| 3014 | } |
| 3015 | |
| 3016 | struct fsm *fsm_context_restrict(struct fsm *X, struct fsmcontexts *LR) { |
| 3017 | |
| 3018 | struct fsm *Var, *Notvar, *UnionL, *UnionP, *Result, *Word; |
| 3019 | struct fsmcontexts *pairs; |
| 3020 | |
| 3021 | /* [.#. \.#.* .#.]-`[[ [\X* X C X \X*]&~[\X* [L1 X \X* X R1|...|Ln X \X* X Rn] \X*]],X,0] */ |
| 3022 | /* Where X = variable symbol */ |
| 3023 | /* The above only works if we do the subtraction iff the right hand side contains .#. in */ |
| 3024 | /* its alphabet */ |
| 3025 | /* A more generic formula is the following: */ |
| 3026 | |
| 3027 | /* `[[[(?) \.#.* (?)] - `[[[\X* X C X \X*] - [\X* [L1 X \X* X R1|...|Ln X \X* X Rn] \X*] ],X,0],.#.,0]; */ |
| 3028 | /* Here, the LHS is another way of saying ~[?+ .#. ?+] */ |
| 3029 | |
| 3030 | Var = fsm_symbol("@VARX@"); |
| 3031 | Notvar = fsm_minimize(fsm_kleene_star(fsm_term_negation(fsm_symbol("@VARX@")))); |
| 3032 | |
| 3033 | /* We add the variable symbol to all alphabets to avoid ? mathing it */ |
| 3034 | /* which would cause extra nondeterminism */ |
| 3035 | sigma_add("@VARX@", X->sigma); |
| 3036 | sigma_sort(X); |
| 3037 | |
| 3038 | /* Also, if any L or R is undeclared we add 0 */ |
| 3039 | for (pairs = LR; pairs != NULL((void*)0); pairs = pairs->next) { |
| 3040 | if (pairs->left == NULL((void*)0)) { |
| 3041 | pairs->left = fsm_empty_string(); |
| 3042 | } else { |
| 3043 | sigma_add("@VARX@",pairs->left->sigma); |
| 3044 | sigma_substitute(".#.", "@#@", pairs->left->sigma); |
| 3045 | sigma_sort(pairs->left); |
| 3046 | } |
| 3047 | if (pairs->right == NULL((void*)0)) { |
| 3048 | pairs->right = fsm_empty_string(); |
| 3049 | } else { |
| 3050 | sigma_add("@VARX@",pairs->right->sigma); |
| 3051 | sigma_substitute(".#.", "@#@", pairs->right->sigma); |
| 3052 | sigma_sort(pairs->right); |
| 3053 | } |
| 3054 | } |
| 3055 | |
| 3056 | UnionP = fsm_empty_set(); |
| 3057 | |
| 3058 | for (pairs = LR; pairs != NULL((void*)0) ; pairs = pairs->next) { |
| 3059 | UnionP = fsm_minimize(fsm_union(fsm_minimize(fsm_concat(fsm_copy(pairs->left),fsm_concat(fsm_copy(Var),fsm_concat(fsm_copy(Notvar),fsm_concat(fsm_copy(Var),fsm_copy(pairs->right)))))), UnionP)); |
| 3060 | } |
| 3061 | |
| 3062 | UnionL = fsm_minimize(fsm_concat(fsm_copy(Notvar),fsm_concat(fsm_copy(Var), fsm_concat(fsm_copy(X), fsm_concat(fsm_copy(Var),fsm_copy(Notvar)))))); |
| 3063 | |
| 3064 | Result = fsm_intersect(UnionL, fsm_complement(fsm_concat(fsm_copy(Notvar),fsm_minimize(fsm_concat(fsm_copy(UnionP),fsm_copy(Notvar)))))); |
| 3065 | if (sigma_find("@VARX@", Result->sigma) != -1) { |
| 3066 | Result = fsm_complement(fsm_substitute_symbol(Result, "@VARX@","@_EPSILON_SYMBOL_@")); |
| 3067 | } else { |
| 3068 | Result = fsm_complement(Result); |
| 3069 | } |
| 3070 | |
| 3071 | if (sigma_find("@#@", Result->sigma) != -1) { |
| 3072 | Word = fsm_minimize(fsm_concat(fsm_symbol("@#@"),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol("@#@"))),fsm_symbol("@#@")))); |
| 3073 | Result = fsm_intersect(Word, Result); |
| 3074 | Result = fsm_substitute_symbol(Result, "@#@", "@_EPSILON_SYMBOL_@"); |
| 3075 | } |
| 3076 | fsm_destroy(UnionP); |
| 3077 | fsm_destroy(Var); |
| 3078 | fsm_destroy(Notvar); |
| 3079 | fsm_destroy(X); |
| 3080 | fsm_clear_contexts(pairs); |
| 3081 | return(Result); |
| 3082 | } |
| 3083 | |
| 3084 | struct fsm *fsm_flatten(struct fsm *net, struct fsm *epsilon) { |
| 3085 | struct fsm *newnet; |
| 3086 | struct fsm_construct_handle *outh; |
| 3087 | struct fsm_read_handle *inh, *eps; |
| 3088 | int i, maxstate, in, out, target; |
| 3089 | char *epssym, *instring, *outstring; |
| 3090 | |
| 3091 | net = fsm_minimize(net); |
| 3092 | |
| 3093 | inh = fsm_read_init(net); |
| 3094 | eps = fsm_read_init(epsilon); |
| 3095 | if (fsm_get_next_arc(eps) == -1) { |
| 3096 | fsm_destroy(net); |
| 3097 | fsm_destroy(epsilon); |
| 3098 | return NULL((void*)0); |
| 3099 | } |
| 3100 | epssym = strdup(fsm_get_arc_in(eps)); |
| 3101 | fsm_read_done(eps); |
| 3102 | |
| 3103 | outh = fsm_construct_init(net->name); |
| 3104 | maxstate = net->statecount; |
| 3105 | |
| 3106 | fsm_construct_copy_sigma(outh, net->sigma); |
| 3107 | |
| 3108 | while (fsm_get_next_arc(inh)) { |
| 3109 | target = fsm_get_arc_target(inh); |
| 3110 | in = fsm_get_arc_num_in(inh); |
| 3111 | out = fsm_get_arc_num_out(inh); |
| 3112 | if (in == EPSILON0 || out == EPSILON0) { |
| 3113 | instring = fsm_get_arc_in(inh); |
| 3114 | outstring = fsm_get_arc_out(inh); |
| 3115 | if (in == EPSILON0) { instring = epssym; } |
| 3116 | if (out == EPSILON0) { outstring = epssym; } |
| 3117 | |
| 3118 | fsm_construct_add_arc(outh, fsm_get_arc_source(inh), maxstate, instring, instring); |
| 3119 | fsm_construct_add_arc(outh, maxstate, target, outstring, outstring); |
| 3120 | } else { |
| 3121 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), maxstate, in, in); |
| 3122 | fsm_construct_add_arc_nums(outh, maxstate, target, out, out); |
| 3123 | } |
| 3124 | maxstate++; |
| 3125 | } |
| 3126 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 3127 | fsm_construct_set_final(outh, i); |
| 3128 | } |
| 3129 | while ((i = fsm_get_next_initial(inh)) != -1) { |
| 3130 | fsm_construct_set_initial(outh, i); |
| 3131 | } |
| 3132 | |
| 3133 | fsm_read_done(inh); |
| 3134 | newnet = fsm_construct_done(outh); |
| 3135 | fsm_destroy(net); |
| 3136 | fsm_destroy(epsilon); |
| 3137 | free(epssym); |
| 3138 | return(newnet); |
| 3139 | } |
| 3140 | |
| 3141 | /* Removes IDENTITY and UNKNOWN transitions. If mode = 1, only removes UNKNOWNs */ |
| 3142 | struct fsm *fsm_close_sigma(struct fsm *net, int mode) { |
| 3143 | struct fsm *newnet; |
| 3144 | struct fsm_construct_handle *newh; |
| 3145 | struct fsm_read_handle *inh; |
| 3146 | int i; |
| 3147 | |
| 3148 | inh = fsm_read_init(net); |
| 3149 | newh = fsm_construct_init(net->name); |
| 3150 | fsm_construct_copy_sigma(newh, net->sigma); |
| 3151 | |
| 3152 | while (fsm_get_next_arc(inh)) { |
| 3153 | if ((fsm_get_arc_num_in(inh) != UNKNOWN1 && fsm_get_arc_num_in(inh) != IDENTITY2 && fsm_get_arc_num_out(inh) != UNKNOWN1 && fsm_get_arc_num_out(inh) != IDENTITY2) || (mode == 1 && fsm_get_arc_num_in(inh) != UNKNOWN1 && fsm_get_arc_num_out(inh) != UNKNOWN1)) |
| 3154 | fsm_construct_add_arc_nums(newh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
| 3155 | } |
| 3156 | while ((i = fsm_get_next_final(inh)) != -1) { |
| 3157 | fsm_construct_set_final(newh, i); |
| 3158 | } |
| 3159 | while ((i = fsm_get_next_initial(inh)) != -1) { |
| 3160 | fsm_construct_set_initial(newh, i); |
| 3161 | } |
| 3162 | fsm_read_done(inh); |
| 3163 | newnet = fsm_construct_done(newh); |
| 3164 | fsm_destroy(net); |
| 3165 | return(fsm_minimize(newnet)); |
| 3166 | } |