File: | constructions.c |
Warning: | line 1956, column 6 Value stored to 'in' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Foma: a finite-state toolkit and library. */ |
2 | /* Copyright © 2008-2021 Mans Hulden */ |
3 | |
4 | /* This file is part of foma. */ |
5 | |
6 | /* Licensed under the Apache License, Version 2.0 (the "License"); */ |
7 | /* you may not use this file except in compliance with the License. */ |
8 | /* You may obtain a copy of the License at */ |
9 | |
10 | /* http://www.apache.org/licenses/LICENSE-2.0 */ |
11 | |
12 | /* Unless required by applicable law or agreed to in writing, software */ |
13 | /* distributed under the License is distributed on an "AS IS" BASIS, */ |
14 | /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ |
15 | /* See the License for the specific language governing permissions and */ |
16 | /* limitations under the License. */ |
17 | |
18 | #include <stdio.h> |
19 | #include <stdlib.h> |
20 | #include <string.h> |
21 | #include "foma.h" |
22 | |
23 | #define KLEENE_STAR0 0 |
24 | #define KLEENE_PLUS1 1 |
25 | #define OPTIONALITY2 2 |
26 | |
27 | #define COMPLEMENT0 0 |
28 | #define COMPLETE1 1 |
29 | |
30 | #define STACK_3_PUSH(a,b,c)int_stack_push(a); int_stack_push(b); int_stack_push(c); int_stack_push(a); int_stack_push(b); int_stack_push(c); |
31 | #define STACK_2_PUSH(a,b)int_stack_push(a); int_stack_push(b); int_stack_push(a); int_stack_push(b); |
32 | |
33 | struct mergesigma { |
34 | char *symbol; |
35 | unsigned char presence; /* 1 = in net 1, 2 = in net 2, 3 = in both */ |
36 | int number; |
37 | struct mergesigma *next; |
38 | }; |
39 | |
40 | int sort_cmp(const void *a, const void *b) { |
41 | return (((const struct fsm_state *)a)->state_no - ((const struct fsm_state *)b)->state_no); |
42 | } |
43 | |
44 | int add_fsm_arc(struct fsm_state *fsm, int offset, int state_no, int in, int out, int target, int final_state, int start_state); |
45 | |
46 | struct fsm *fsm_kleene_closure(struct fsm *net, int optionality); |
47 | |
48 | struct fsm *fsm_kleene_star(struct fsm *net) { |
49 | return (fsm_kleene_closure(net, KLEENE_STAR0)); |
50 | } |
51 | |
52 | struct fsm *fsm_kleene_plus(struct fsm *net) { |
53 | return (fsm_kleene_closure(net, KLEENE_PLUS1)); |
54 | } |
55 | |
56 | struct fsm *fsm_optionality(struct fsm *net) { |
57 | return (fsm_kleene_closure(net, OPTIONALITY2)); |
58 | } |
59 | |
60 | struct fsm *fsm_escape(char *symbol) { |
61 | return(fsm_symbol(symbol+1)); |
62 | } |
63 | |
64 | /* Convert a multicharacter-string-containing machine */ |
65 | /* to the equivalent "letter" machine where all arcs */ |
66 | /* are single utf8 letters. */ |
67 | |
68 | struct fsm *fsm_letter_machine(struct fsm *net) { |
69 | |
70 | struct fsm *outnet; |
71 | struct fsm_read_handle *inh; |
72 | struct fsm_construct_handle *outh; |
73 | int i, steps, source, target, addstate, innum, outnum, inlen, outlen; |
74 | char *in, *out, *currin, *currout, tmpin[128], tmpout[128]; |
75 | |
76 | inh = fsm_read_init(fsm_minimize(net)); |
77 | outh = fsm_construct_init("name"); |
78 | addstate = net->statecount; |
79 | |
80 | while (fsm_get_next_arc(inh)) { |
81 | in = fsm_get_arc_in(inh); |
82 | out = fsm_get_arc_out(inh); |
83 | innum = fsm_get_arc_num_in(inh); |
84 | outnum = fsm_get_arc_num_out(inh); |
85 | source = fsm_get_arc_source(inh); |
86 | target = fsm_get_arc_target(inh); |
87 | |
88 | if (((innum > IDENTITY2) && utf8strlen(in) > 1) || ((outnum > IDENTITY2) && utf8strlen(out) > 1)) { |
89 | inlen = innum <= IDENTITY2 ? 1 : utf8strlen(in); |
90 | outlen = outnum <= IDENTITY2 ? 1 : utf8strlen(out); |
91 | steps = inlen > outlen ? inlen : outlen; |
92 | |
93 | target = addstate; |
94 | for (i = 0; i < steps; i++) { |
95 | if (innum <= IDENTITY2 || inlen < 1) { |
96 | if (inlen < 1) |
97 | currin = "@_EPSILON_SYMBOL_@"; |
98 | else |
99 | currin = in; |
100 | } else { |
101 | strncpy(tmpin, in, utf8skip(in)+1); |
102 | *(tmpin+utf8skip(in)+1) = '\0'; |
103 | currin = tmpin; |
104 | inlen--; |
105 | in = in+utf8skip(in)+1; |
106 | } |
107 | if (outnum <= IDENTITY2 || outlen < 1) { |
108 | if (outlen < 1) |
109 | currout = "@_EPSILON_SYMBOL_@"; |
110 | else |
111 | currout = out; |
112 | } else { |
113 | strncpy(tmpout, out, utf8skip(in)+1); |
114 | *(tmpout+utf8skip(out)+1) = '\0'; |
115 | currout = tmpout; |
116 | out = out+utf8skip(out)+1; |
117 | outlen--; |
118 | } |
119 | if (i == 0 && steps > 1) { |
120 | target = addstate; |
121 | addstate++; |
122 | } |
123 | if (i > 0 && (steps-i == 1)) { |
124 | source = addstate - 1; |
125 | target = fsm_get_arc_target(inh); |
126 | } |
127 | if (i > 0 && (steps-i != 1)) { |
128 | source = addstate-1; |
129 | target = addstate; |
130 | addstate++; |
131 | } |
132 | fsm_construct_add_arc(outh,source,target,currin,currout); |
133 | } |
134 | } else { |
135 | fsm_construct_add_arc(outh,source,target,in,out); |
136 | } |
137 | } |
138 | while ((i = fsm_get_next_final(inh)) != -1) { |
139 | fsm_construct_set_final(outh, i); |
140 | } |
141 | while ((i = fsm_get_next_initial(inh)) != -1) { |
142 | fsm_construct_set_initial(outh, i); |
143 | } |
144 | fsm_read_done(inh); |
145 | outnet = fsm_construct_done(outh); |
146 | return(outnet); |
147 | } |
148 | |
149 | struct fsm *fsm_explode(char *symbol) { |
150 | struct fsm *net; |
151 | struct fsm_construct_handle *h; |
152 | char *tempstring; |
153 | int length, i, j, skip; |
154 | |
155 | h = fsm_construct_init(""); |
156 | fsm_construct_set_initial(h,0); |
157 | |
158 | length = strlen(symbol)-2; |
159 | for (i=1, j=1; i <= length; i += skip, j++) { |
160 | skip = utf8skip(symbol+i)+1; |
161 | tempstring = xxstrndup(((symbol+i)),skip); |
162 | fsm_construct_add_arc(h,j-1,j,tempstring,tempstring); |
163 | free(tempstring); |
164 | } |
165 | fsm_construct_set_final(h, j-1); |
166 | net = fsm_construct_done(h); |
167 | return(net); |
168 | } |
169 | |
170 | struct fsm *fsm_symbol(char *symbol) { |
171 | struct fsm *net; |
172 | int symbol_no; |
173 | |
174 | net = fsm_create(""); |
175 | fsm_update_flags(net, YES1, YES1, YES1, YES1, YES1, NO0); |
176 | if (strcmp(symbol,"@_EPSILON_SYMBOL_@")==0) { |
177 | /* Epsilon */ |
178 | (void)sigma_add_special(EPSILON0, net->sigma); |
179 | net->states = malloc(sizeof(struct fsm_state)*2); |
180 | add_fsm_arc(net->states, 0, 0, -1,-1,-1,1,1); |
181 | add_fsm_arc(net->states, 1, -1,-1,-1,-1,-1,-1); |
182 | net->arccount = 0; |
183 | net->statecount = 1; |
184 | net->linecount = 1; |
185 | net->finalcount = 1; |
186 | net->is_deterministic = NO0; |
187 | net->is_minimized = NO0; |
188 | net->is_epsilon_free = NO0; |
189 | } else { |
190 | if ((strcmp(symbol,"@_IDENTITY_SYMBOL_@") == 0)) { |
191 | symbol_no = sigma_add_special(IDENTITY2,net->sigma); |
192 | } else { |
193 | symbol_no = sigma_add(symbol,net->sigma); |
194 | } |
195 | net->states = malloc(sizeof(struct fsm_state)*3); |
196 | add_fsm_arc(net->states, 0, 0, symbol_no, symbol_no, 1, 0, 1); |
197 | add_fsm_arc(net->states, 1, 1, -1, -1, -1, 1, 0); |
198 | add_fsm_arc(net->states, 2, -1, -1, -1, -1, -1, -1); |
199 | net->arity = 1; |
200 | net->pathcount = 1; |
201 | net->arccount = 1; |
202 | net->statecount = 2; |
203 | net->linecount = 2; |
204 | net->finalcount = 1; |
205 | net->arcs_sorted_in = YES1; |
206 | net->arcs_sorted_out = YES1; |
207 | net->is_deterministic = YES1; |
208 | net->is_minimized = YES1; |
209 | net->is_epsilon_free = YES1; |
210 | } |
211 | return(net); |
212 | } |
213 | |
214 | void fsm_sort_lines(struct fsm *net) { |
215 | struct fsm_state *fsm; |
216 | fsm = net->states; |
217 | qsort(fsm, find_arccount(fsm), sizeof(struct fsm_state), sort_cmp); |
218 | } |
219 | |
220 | void fsm_update_flags(struct fsm *net, int det, int pru, int min, int eps, int loop, int completed) { |
221 | net->is_deterministic = det; |
222 | net->is_pruned = pru; |
223 | net->is_minimized = min; |
224 | net->is_epsilon_free = eps; |
225 | net->is_loop_free = loop; |
226 | net->is_completed = completed; |
227 | net->arcs_sorted_in = NO0; |
228 | net->arcs_sorted_out = NO0; |
229 | } |
230 | |
231 | int fsm_count_states(struct fsm_state *fsm) { |
232 | int i, temp = -1, states = 0; |
233 | for(i=0; (fsm+i)->state_no != -1; i++) { |
234 | if (temp != (fsm+i)->state_no) { |
235 | states++; |
236 | temp = (fsm+i)->state_no; |
237 | } |
238 | } |
239 | return(states); |
240 | } |
241 | |
242 | struct state_arr { |
243 | int final; |
244 | int start; |
245 | struct fsm_state *transitions; |
246 | }; |
247 | |
248 | struct state_arr *init_state_pointers(struct fsm_state *fsm_state) { |
249 | |
250 | /* Create an array for quick lookup of whether states are final, and a pointer to the first line regarding each state */ |
251 | |
252 | struct state_arr *state_arr; |
253 | int states, i, sold; |
254 | sold = -1; |
255 | states = fsm_count_states(fsm_state); |
256 | state_arr = malloc(sizeof(struct state_arr)*(states+1)); |
257 | for (i=0; i<states; i++) { |
258 | (state_arr+i)->final = 0; |
259 | (state_arr+i)->start = 0; |
260 | } |
261 | |
262 | for (i=0; (fsm_state+i)->state_no != -1; i++) { |
263 | if ((fsm_state+i)->final_state == 1) |
264 | (state_arr+((fsm_state+i)->state_no))->final = 1; |
265 | if ((fsm_state+i)->start_state == 1) |
266 | (state_arr+((fsm_state+i)->state_no))->start = 1; |
267 | if ((fsm_state+i)->state_no != sold) { |
268 | (state_arr+((fsm_state+i)->state_no))->transitions = (fsm_state+i); |
269 | sold = (fsm_state+i)->state_no; |
270 | } |
271 | } |
272 | return(state_arr); |
273 | } |
274 | |
275 | /* An open addressing scheme (with linear probing) to store triplets of ints */ |
276 | /* and hashing them with an automatically increasing key at every insert */ |
277 | /* The table is rehashed whenever occupancy reaches 0.5 */ |
278 | |
279 | struct triplethash_triplets { |
280 | int a; |
281 | int b; |
282 | int c; |
283 | int key; |
284 | }; |
285 | |
286 | struct triplethash { |
287 | struct triplethash_triplets *triplets; |
288 | unsigned int tablesize; |
289 | int occupancy; |
290 | }; |
291 | |
292 | struct triplethash *triplet_hash_init() { |
293 | struct triplethash *th; |
294 | int i; |
295 | th = malloc(sizeof(struct triplethash)); |
296 | th->tablesize = 128; |
297 | th->occupancy = 0; |
298 | th->triplets = malloc(sizeof(struct triplethash_triplets) * th->tablesize); |
299 | for (i = 0; i < th->tablesize; i++) { |
300 | (th->triplets+i)->key = -1; |
301 | } |
302 | return(th); |
303 | } |
304 | |
305 | unsigned int triplethash_hashf(int a, int b, int c) { |
306 | return((unsigned int)(a * 7907 + b * 86028157 + c * 7919)); |
307 | } |
308 | |
309 | void triplet_hash_free(struct triplethash *th) { |
310 | if (th != NULL((void*)0)) { |
311 | if (th->triplets != NULL((void*)0)) { |
312 | free(th->triplets); |
313 | } |
314 | free(th); |
315 | } |
316 | } |
317 | |
318 | void triplet_hash_rehash(struct triplethash *th); |
319 | |
320 | void triplet_hash_insert_with_key(struct triplethash *th, int a, int b, int c, int key) { |
321 | struct triplethash_triplets *th_table; |
322 | unsigned int hash; |
323 | th_table = th->triplets; |
324 | hash = triplethash_hashf(a, b, c) % th->tablesize; |
325 | for (;;) { |
326 | if ((th_table + hash)->key == -1) { |
327 | (th_table + hash)->key = key; |
328 | (th_table + hash)->a = a; |
329 | (th_table + hash)->b = b; |
330 | (th_table + hash)->c = c; |
331 | break; |
332 | } |
333 | hash++; |
334 | if (hash >= th->tablesize) |
335 | hash -= th->tablesize; |
336 | } |
337 | } |
338 | |
339 | int triplet_hash_insert(struct triplethash *th, int a, int b, int c) { |
340 | struct triplethash_triplets *th_table; |
341 | unsigned int hash; |
342 | th_table = th->triplets; |
343 | hash = triplethash_hashf(a,b,c) % th->tablesize; |
344 | for (;;) { |
345 | if ((th_table + hash)->key == - 1) { |
346 | (th_table + hash)->key = th->occupancy; |
347 | (th_table + hash)->a = a; |
348 | (th_table + hash)->b = b; |
349 | (th_table + hash)->c = c; |
350 | th->occupancy = th->occupancy + 1; |
351 | if (th->occupancy > th->tablesize / 2) { |
352 | triplet_hash_rehash(th); |
353 | } |
354 | return(th->occupancy - 1); |
355 | } |
356 | hash++; |
357 | if (hash >= th->tablesize) |
358 | hash -= th->tablesize; |
359 | } |
360 | } |
361 | |
362 | void triplet_hash_rehash(struct triplethash *th) { |
363 | int i; |
364 | unsigned int newtablesize, oldtablesize; |
365 | struct triplethash_triplets *oldtriplets; |
366 | newtablesize = th->tablesize * 2; |
367 | oldtablesize = th->tablesize; |
368 | oldtriplets = th->triplets; |
369 | th->triplets = malloc(sizeof(struct triplethash_triplets) * newtablesize); |
370 | th->tablesize = newtablesize; |
371 | for (i = 0; i < newtablesize; i++) { |
372 | (th->triplets+i)->key = -1; |
373 | } |
374 | for (i = 0; i < oldtablesize; i++) { |
375 | if ((oldtriplets+i)-> key != -1) { |
376 | triplet_hash_insert_with_key(th, (oldtriplets+i)->a, (oldtriplets+i)->b, (oldtriplets+i)->c, (oldtriplets+i)->key); |
377 | } |
378 | } |
379 | free(oldtriplets); |
380 | } |
381 | |
382 | int triplet_hash_find(struct triplethash *th, int a, int b, int c) { |
383 | struct triplethash_triplets *th_table; |
384 | unsigned int hash, j; |
385 | th_table = th->triplets; |
386 | hash = triplethash_hashf(a, b, c) % th->tablesize; |
387 | for (j = 0; j < th->tablesize; j++) { |
388 | if ((th_table + hash)->key == - 1) |
389 | return -1; |
390 | if ((th_table + hash)->a == a && (th_table + hash)->b == b && (th_table + hash)->c == c) { |
391 | return((th_table + hash)->key); |
392 | } |
393 | hash++; |
394 | if (hash >= th->tablesize) |
395 | hash -= th->tablesize; |
396 | } |
397 | return -1; |
398 | } |
399 | |
400 | struct fsm *fsm_intersect(struct fsm *net1, struct fsm *net2) { |
401 | |
402 | struct blookup {int mainloop; int target; } *array, *bptr; |
403 | int a,b,current_state, current_start, current_final, target_number, sigma2size, mainloop; |
404 | struct fsm_state *machine_a, *machine_b; |
405 | struct state_arr *point_a, *point_b; |
406 | struct fsm *new_net; |
407 | struct triplethash *th; |
408 | |
409 | net1 = fsm_minimize(net1); |
410 | net2 = fsm_minimize(net2); |
411 | |
412 | if (fsm_isempty(net1) || fsm_isempty(net2)) { |
413 | fsm_destroy(net1); |
414 | fsm_destroy(net2); |
415 | return(fsm_empty_set()); |
416 | } |
417 | |
418 | fsm_merge_sigma(net1, net2); |
419 | |
420 | fsm_update_flags(net1, YES1, NO0, UNK2, YES1, UNK2, UNK2); |
421 | |
422 | machine_a = net1->states; |
423 | machine_b = net2->states; |
424 | |
425 | sigma2size = sigma_max(net2->sigma)+1; |
426 | array = calloc(sigma2size*sigma2size, sizeof(struct blookup)); |
427 | mainloop = 0; |
428 | |
429 | /* Intersect two networks by the running-in-parallel method */ |
430 | /* new state 0 = {0,0} */ |
431 | |
432 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
433 | |
434 | th = triplet_hash_init(); |
435 | triplet_hash_insert(th, 0, 0, 0); |
436 | |
437 | fsm_state_init(sigma_max(net1->sigma)); |
438 | |
439 | point_a = init_state_pointers(machine_a); |
440 | point_b = init_state_pointers(machine_b); |
441 | |
442 | while (!int_stack_isempty()) { |
443 | |
444 | /* Get a pair of states to examine */ |
445 | |
446 | a = int_stack_pop(); |
447 | b = int_stack_pop(); |
448 | |
449 | current_state = triplet_hash_find(th, a, b, 0); |
450 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1)) ? 1 : 0; |
451 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
452 | |
453 | fsm_state_set_current_state(current_state, current_final, current_start); |
454 | |
455 | /* Create a lookup index for machine b */ |
456 | /* array[in][out] holds the target for this state and the symbol pair in:out */ |
457 | /* Also, we keep track of whether an entry is fresh by the mainloop counter */ |
458 | /* so we don't mistakenly use an old entry and don't have to clear the table */ |
459 | /* between each state pair we encounter */ |
460 | |
461 | for (mainloop++, machine_b = (point_b+b)->transitions; machine_b->state_no == b; machine_b++) { |
462 | if (machine_b->in < 0) continue; |
463 | bptr = array+(machine_b->in*sigma2size)+machine_b->out; |
464 | bptr->mainloop = mainloop; |
465 | bptr->target = machine_b->target; |
466 | } |
467 | |
468 | /* The main loop where we run the machines in parallel */ |
469 | /* We look at each transition of a in this state, and consult the index of b */ |
470 | /* we just created */ |
471 | |
472 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
473 | if (machine_a->in < 0 || machine_a->out < 0) continue; |
474 | bptr = array+(machine_a->in*sigma2size)+machine_a->out; |
475 | |
476 | if (bptr->mainloop != mainloop) |
477 | continue; |
478 | |
479 | if ((target_number = triplet_hash_find(th, machine_a->target, bptr->target, 0)) == -1) { |
480 | STACK_2_PUSH(bptr->target, machine_a->target)int_stack_push(bptr->target); int_stack_push(machine_a-> target);; |
481 | target_number = triplet_hash_insert(th, machine_a->target, bptr->target, 0); |
482 | } |
483 | |
484 | fsm_state_add_arc(current_state, machine_a->in, machine_a->out, target_number, current_final, current_start); |
485 | |
486 | } |
487 | fsm_state_end_state(); |
488 | } |
489 | new_net = fsm_create(""); |
490 | fsm_sigma_destroy(new_net->sigma); |
491 | new_net->sigma = net1->sigma; |
492 | net1->sigma = NULL((void*)0); |
493 | fsm_destroy(net2); |
494 | fsm_destroy(net1); |
495 | fsm_state_close(new_net); |
496 | free(point_a); |
497 | free(point_b); |
498 | free(array); |
499 | triplet_hash_free(th); |
500 | return(fsm_coaccessible(new_net)); |
501 | } |
502 | |
503 | struct fsm *fsm_compose(struct fsm *net1, struct fsm *net2) { |
504 | |
505 | |
506 | /* The composition algorithm is the basic naive composition where we lazily */ |
507 | /* take the cross-product of states P and Q and move to a new state with symbols */ |
508 | /* ain, bout if the symbols aout = bin. Also, if aout = 0 state p goes to */ |
509 | /* its target, while q stays. Similarly, if bin = 0, q goes to its target */ |
510 | /* while p stays. */ |
511 | |
512 | /* We have two variants of the algorithm to avoid creating multiple paths: */ |
513 | /* 1) Bistate composition. In this variant, when we create a new state, we call it */ |
514 | /* (p,q,mode) where mode = 0 or 1, depending on what kind of an arc we followed */ |
515 | /* to get there. If we followed an x:y arc where x and y are both real symbols */ |
516 | /* we always go to mode 0, however, if we followed an 0:y arc, we go to mode 1. */ |
517 | /* from mode 1, we do not follow x:0 arcs. Each (p,q,mode) is unique, and */ |
518 | /* from (p,q,X) we always consider the transitions from p and q. */ |
519 | /* We never create arcs (x:0 0:y) yielding x:y. */ |
520 | |
521 | /* 2) Tristate composition. Here we always go to mode 0 with a x:y arc. */ |
522 | /* (x:0,0:y) yielding x:y is allowed, but only in mode 0 */ |
523 | /* (x:y y:z) is always allowed and results in target = mode 0 */ |
524 | /* 0:y arcs lead to mode 2, and from there we stay in mode 2 with 0:y */ |
525 | /* in mode 2 we only consider 0:y and x:y arcs */ |
526 | /* x:0 arcs lead to mode 1, and from there we stay in mode 1 with x:0 */ |
527 | /* in mode 1 we only consider x:0 and x:y arcs */ |
528 | |
529 | /* It seems unsettled which type of composition is better. Tristate is similar to */ |
530 | /* the filter transducer given in Mohri, Pereira and Riley (1996) and works well */ |
531 | /* for cases such as [a:0 b:0 c:0 .o. 0:d 0:e 0:f], yielding the shortest path. */ |
532 | /* However, for generic cases, bistate seems to yield smaller transducers. */ |
533 | /* The global variable g_compose_tristate is set to OFF by default */ |
534 | |
535 | struct outarray { |
536 | short int symin; |
537 | short int symout; |
538 | int target; |
539 | int mainloop; |
540 | } *outarray, *iptr, *currtail; |
541 | |
542 | struct index { |
543 | struct outarray *tail; |
544 | } *index; |
545 | |
546 | extern int g_compose_tristate, g_flag_is_epsilon; |
547 | int a,b,i,mainloop,current_state, current_start, current_final, target_number, ain, bin, aout, bout, asearch, max2sigma; |
548 | struct fsm_state *machine_a, *machine_b; |
549 | struct state_arr *point_a, *point_b; |
550 | struct triplethash *th; |
551 | int mode; |
552 | _Bool *is_flag = NULL((void*)0); |
553 | |
554 | |
555 | net1 = fsm_minimize(net1); |
556 | net2 = fsm_minimize(net2); |
557 | |
558 | if (fsm_isempty(net1) || fsm_isempty(net2)) { |
559 | fsm_destroy(net1); |
560 | fsm_destroy(net2); |
561 | return(fsm_empty_set()); |
562 | } |
563 | |
564 | /* If flag-is-epsilon is on, we need to add the flag symbols */ |
565 | /* in both networks to each other's sigma so that UNKNOWN */ |
566 | /* or IDENTITY symbols do not match these flags, since they are */ |
567 | /* supposed to have the behavior of EPSILON */ |
568 | /* And we need to do this before merging the sigmas, of course */ |
569 | |
570 | if (g_flag_is_epsilon) { |
571 | struct sigma *sig1, *sig2; |
572 | int flags1, flags2; |
573 | flags1 = flags2 = 0; |
574 | sig2 = net2->sigma; |
575 | max2sigma = sigma_max(net2->sigma); |
576 | for (sig1 = net1->sigma; sig1 != NULL((void*)0); sig1 = sig1->next) { |
577 | if (flag_check(sig1->symbol)) { |
578 | flags1 = 1; |
579 | if (sigma_find(sig1->symbol, sig2) == -1) { |
580 | sigma_add(sig1->symbol, sig2); |
581 | } |
582 | } |
583 | } |
584 | |
585 | sig1 = net1->sigma; |
586 | for (sig2 = net2->sigma; sig2 != NULL((void*)0) ; sig2 = sig2->next) { |
587 | if (flag_check(sig2->symbol)) { |
588 | if (sig2->number <= max2sigma) { |
589 | flags2 = 1; |
590 | } |
591 | if (sigma_find(sig2->symbol, sig1) == -1) { |
592 | sigma_add(sig2->symbol, sig1); |
593 | } |
594 | } |
595 | } |
596 | sigma_sort(net2); |
597 | sigma_sort(net1); |
598 | if (flags1 && flags2) { |
599 | printf("***Warning: flag-is-epsilon is ON and both networks contain flags in composition. This may yield incorrect results. Set flag-is-epsilon to OFF.\n"); |
600 | } |
601 | } |
602 | |
603 | fsm_merge_sigma(net1, net2); |
604 | |
605 | if (g_flag_is_epsilon) { |
606 | /* Create lookup table for quickly checking if a symbol is a flag */ |
607 | struct sigma *sig1; |
608 | is_flag = malloc(sizeof(_Bool)*(sigma_max(net1->sigma)+1)); |
609 | for (sig1 = net1->sigma; sig1 != NULL((void*)0); sig1=sig1->next) { |
610 | if (flag_check(sig1->symbol)) { |
611 | *(is_flag+(sig1->number)) = 1; |
612 | } else { |
613 | *(is_flag+(sig1->number)) = 0; |
614 | } |
615 | } |
616 | } |
617 | |
618 | fsm_update_flags(net1, YES1, NO0, UNK2, YES1, UNK2, UNK2); |
619 | |
620 | machine_a = net1->states; |
621 | machine_b = net2->states; |
622 | |
623 | max2sigma = sigma_max(net2->sigma); |
624 | |
625 | /* Create an index for looking up input symbols in machine b quickly */ |
626 | /* We store each machine_b->in symbol in outarray[symin][...] */ |
627 | /* the array index[symin] points to the tail of the current list in outarray */ |
628 | /* (we may have many entries for one input symbol as there may be many outputs */ |
629 | /* The field mainloop tells us whether the entry is current as we want to loop */ |
630 | /* UNKNOWN and IDENTITY are indexed as UNKNOWN because we need to find both */ |
631 | /* as they share some semantics */ |
632 | |
633 | index = calloc(max2sigma+1, sizeof(struct index)); |
634 | outarray = calloc((max2sigma+2)*(max2sigma+1), sizeof(struct outarray)); |
635 | |
636 | for (i=0; i <= max2sigma; i++) { |
637 | (index+i)->tail = outarray + ((max2sigma+2)*i); |
638 | } |
639 | |
640 | |
641 | /* Mode, a, b */ |
642 | STACK_3_PUSH(0,0,0)int_stack_push(0); int_stack_push(0); int_stack_push(0);; |
643 | |
644 | th = triplet_hash_init(); |
645 | triplet_hash_insert(th, 0, 0, 0); |
646 | |
647 | fsm_state_init(sigma_max(net1->sigma)); |
648 | |
649 | point_a = init_state_pointers(machine_a); |
650 | point_b = init_state_pointers(machine_b); |
651 | |
652 | mainloop = 0; |
653 | |
654 | while (!int_stack_isempty()) { |
655 | |
656 | /* Get a pair of states to examine */ |
657 | |
658 | a = int_stack_pop(); |
659 | b = int_stack_pop(); |
660 | mode = int_stack_pop(); |
661 | |
662 | current_state = triplet_hash_find(th, a,b,mode); |
663 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1) && (mode == 0)) ? 1 : 0; |
664 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
665 | |
666 | fsm_state_set_current_state(current_state, current_final, current_start); |
667 | |
668 | /* Create the index for machine b in this state */ |
669 | for (mainloop++, machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
670 | int bindex; |
671 | /* Index b */ |
672 | bindex = (machine_b->in == IDENTITY2) ? UNKNOWN1 : machine_b->in; |
673 | if (bindex < 0 || machine_b->target < 0) |
674 | continue; |
675 | |
676 | iptr = (index+bindex)->tail; |
677 | if (iptr->mainloop != mainloop) { |
678 | iptr = (index+bindex)->tail = outarray+(bindex*(max2sigma+2)); |
679 | } else { |
680 | iptr++; |
681 | } |
682 | iptr->symin = machine_b->in; |
683 | iptr->symout = machine_b->out; |
684 | iptr->mainloop = mainloop; |
685 | iptr->target = machine_b->target; |
686 | (index+bindex)->tail = iptr; |
687 | } |
688 | |
689 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
690 | |
691 | /* If we have the same transition from (a,b)-> some state */ |
692 | /* If we have x:y y:z trans to some state */ |
693 | aout = machine_a->out; |
694 | ain = machine_a->in; |
695 | /* IDENTITY is indexed under UNKNOWN (see above) */ |
696 | asearch = (aout == IDENTITY2) ? UNKNOWN1 : aout; |
697 | if (aout < 0) continue; |
698 | iptr = outarray+(asearch*(max2sigma+2)); |
699 | currtail = (index+asearch)->tail + 1; |
700 | for ( ; iptr != currtail && iptr->mainloop == mainloop ; iptr++) { |
701 | |
702 | ain = machine_a->in; |
703 | aout = machine_a->out; |
704 | bin = iptr->symin; |
705 | bout = iptr->symout; |
706 | |
707 | if (aout == IDENTITY2 && bin == UNKNOWN1) { |
708 | ain = aout = UNKNOWN1; |
709 | } |
710 | else if (aout == UNKNOWN1 && bin == IDENTITY2) { |
711 | bin = bout = UNKNOWN1; |
712 | } |
713 | |
714 | if (!g_compose_tristate) { |
715 | if (bin == aout && bin != -1 && bin != EPSILON0) { |
716 | /* mode -> 0 */ |
717 | if ((target_number = triplet_hash_find(th, machine_a->target, iptr->target, 0)) == -1) { |
718 | STACK_3_PUSH(0, iptr->target, machine_a->target)int_stack_push(0); int_stack_push(iptr->target); int_stack_push (machine_a->target);; |
719 | target_number = triplet_hash_insert(th, machine_a->target, iptr->target, 0); |
720 | } |
721 | |
722 | fsm_state_add_arc(current_state, ain, bout, target_number, current_final, current_start); |
723 | } |
724 | } |
725 | |
726 | else if (g_compose_tristate) { |
727 | if (bin == aout && bin != -1 && ((bin != EPSILON0 || mode == 0))) { |
728 | /* mode -> 0 */ |
729 | if ((target_number = triplet_hash_find(th, machine_a->target, iptr->target, 0)) == -1) { |
730 | STACK_3_PUSH(0, iptr->target, machine_a->target)int_stack_push(0); int_stack_push(iptr->target); int_stack_push (machine_a->target);; |
731 | target_number = triplet_hash_insert(th, machine_a->target, iptr->target, 0); |
732 | } |
733 | |
734 | fsm_state_add_arc(current_state, ain, bout, target_number, current_final, current_start); |
735 | } |
736 | } |
737 | |
738 | } |
739 | } |
740 | |
741 | /* Treat epsilon outputs on machine a (may include flags) */ |
742 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
743 | aout = machine_a->out; |
744 | if (aout != EPSILON0 && g_flag_is_epsilon == 0) |
745 | continue; |
746 | ain = machine_a->in; |
747 | |
748 | if (g_flag_is_epsilon && aout != -1 && mode == 0 && *(is_flag+aout)) { |
749 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 0)) == -1) { |
750 | STACK_3_PUSH(0, b, machine_a->target)int_stack_push(0); int_stack_push(b); int_stack_push(machine_a ->target);; |
751 | target_number = triplet_hash_insert(th, machine_a->target, b, 0); |
752 | } |
753 | fsm_state_add_arc(current_state, ain, aout, target_number, current_final, current_start); |
754 | } |
755 | |
756 | if (!g_compose_tristate) { |
757 | /* Check A:0 arcs on upper side */ |
758 | if (aout == EPSILON0 && mode == 0) { |
759 | /* mode -> 0 */ |
760 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 0)) == -1) { |
761 | STACK_3_PUSH(0, b, machine_a->target)int_stack_push(0); int_stack_push(b); int_stack_push(machine_a ->target);; |
762 | target_number = triplet_hash_insert(th, machine_a->target, b, 0); |
763 | } |
764 | |
765 | fsm_state_add_arc(current_state, ain, EPSILON0, target_number, current_final, current_start); |
766 | } |
767 | } |
768 | |
769 | else if (g_compose_tristate) { |
770 | if (aout == EPSILON0 && (mode != 2)) { |
771 | /* mode -> 1 */ |
772 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 1)) == -1) { |
773 | STACK_3_PUSH(1, b, machine_a->target)int_stack_push(1); int_stack_push(b); int_stack_push(machine_a ->target);; |
774 | target_number = triplet_hash_insert(th, machine_a->target, b, 1); |
775 | } |
776 | |
777 | fsm_state_add_arc(current_state, ain, EPSILON0, target_number, current_final, current_start); |
778 | |
779 | } |
780 | } |
781 | |
782 | } |
783 | /* Treat epsilon inputs on machine b (may include flags) */ |
784 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
785 | bin = machine_b->in; |
786 | if (bin != EPSILON0 && g_flag_is_epsilon == 0) |
787 | continue; |
788 | |
789 | bout = machine_b->out; |
790 | |
791 | if (g_flag_is_epsilon && bin != -1 && *(is_flag+bin)) { |
792 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 1)) == -1) { |
793 | STACK_3_PUSH(1, machine_b->target,a)int_stack_push(1); int_stack_push(machine_b->target); int_stack_push (a);; |
794 | target_number = triplet_hash_insert(th, a, machine_b->target, 1); |
795 | } |
796 | fsm_state_add_arc(current_state, bin, bout, target_number, current_final, current_start); |
797 | } |
798 | |
799 | if (!g_compose_tristate) { |
800 | /* Check 0:A arcs on lower side */ |
801 | if (bin == EPSILON0) { |
802 | /* mode -> 1 */ |
803 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 1)) == -1) { |
804 | STACK_3_PUSH(1, machine_b->target,a)int_stack_push(1); int_stack_push(machine_b->target); int_stack_push (a);; |
805 | target_number = triplet_hash_insert(th, a, machine_b->target, 1); |
806 | } |
807 | |
808 | fsm_state_add_arc(current_state, EPSILON0, bout, target_number, current_final, current_start); |
809 | } |
810 | } |
811 | |
812 | else if (g_compose_tristate) { |
813 | /* Check 0:A arcs on lower side */ |
814 | if (bin == EPSILON0 && mode != 1) { |
815 | /* mode -> 1 */ |
816 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 2)) == -1) { |
817 | STACK_3_PUSH(2, machine_b->target, a)int_stack_push(2); int_stack_push(machine_b->target); int_stack_push (a);; |
818 | target_number = triplet_hash_insert(th, a, machine_b->target, 2); |
819 | } |
820 | |
821 | fsm_state_add_arc(current_state, EPSILON0, bout, target_number, current_final, current_start); |
822 | } |
823 | } |
824 | } |
825 | fsm_state_end_state(); |
826 | } |
827 | |
828 | free(net1->states); |
829 | fsm_destroy(net2); |
830 | fsm_state_close(net1); |
831 | free(point_a); |
832 | free(point_b); |
833 | free(index); |
834 | free(outarray); |
835 | |
836 | if (g_flag_is_epsilon) |
837 | free(is_flag); |
838 | triplet_hash_free(th); |
839 | net1 = fsm_topsort(fsm_coaccessible(net1)); |
840 | return(fsm_coaccessible(net1)); |
841 | } |
842 | |
843 | struct mergesigma *add_to_mergesigma(struct mergesigma *msigma, struct sigma *sigma, short presence) { |
844 | int number = 0; |
845 | |
846 | if (msigma->number == -1) { |
847 | number = 2; |
848 | } else { |
849 | msigma->next = malloc(sizeof(struct mergesigma)); |
850 | number = msigma->number; |
851 | msigma = msigma->next; |
852 | msigma->next = NULL((void*)0); |
853 | } |
854 | |
855 | if (sigma->number < 3) { |
856 | msigma->number = sigma->number; |
857 | } else { |
858 | if (number < 3) |
859 | number = 2; |
860 | msigma->number = number+1; |
861 | } |
862 | msigma->symbol = sigma->symbol; |
863 | msigma->presence = presence; |
864 | return(msigma); |
865 | } |
866 | |
867 | struct sigma *copy_mergesigma(struct mergesigma *mergesigma) { |
868 | struct sigma *sigma, *new_sigma; |
869 | |
870 | sigma = new_sigma = NULL((void*)0); |
871 | while(mergesigma != NULL((void*)0)) { |
872 | if (sigma == NULL((void*)0)) { |
873 | sigma = malloc(sizeof(struct sigma)); |
874 | new_sigma = sigma; |
875 | } else { |
876 | sigma->next = malloc(sizeof(struct sigma)); |
877 | sigma = sigma->next; |
878 | } |
879 | sigma->next = NULL((void*)0); |
880 | sigma->number = mergesigma->number; |
881 | |
882 | sigma->symbol = NULL((void*)0); |
883 | if (mergesigma->symbol != NULL((void*)0)) |
884 | sigma->symbol = strdup(mergesigma->symbol); |
885 | mergesigma = mergesigma->next; |
886 | } |
887 | return(new_sigma); |
888 | } |
889 | |
890 | void fsm_merge_sigma(struct fsm *net1, struct fsm *net2) { |
891 | |
892 | struct sigma *sigma_1, *sigma_2, *new_sigma_1 = NULL((void*)0), *new_sigma_2 = NULL((void*)0); |
893 | struct mergesigma *mergesigma, *mergesigma2, *start_mergesigma; |
894 | struct fsm_state *fsm_state, *new_1_state, *new_2_state; |
895 | int i, j, end_1 = 0, end_2 = 0, sigmasizes, *mapping_1, *mapping_2, equal = 1, unknown_1 = 0, unknown_2 = 0, net_unk = 0, net_adds = 0, net_lines; |
896 | |
897 | if (!fsm_options.skip_word_boundary_marker) { |
898 | i = sigma_find(".#.", net1->sigma); |
899 | j = sigma_find(".#.", net2->sigma); |
900 | if (i != -1 && j == -1) { |
901 | sigma_add(".#.", net2->sigma); |
902 | sigma_sort(net2); |
903 | } |
904 | if (j != -1 && i == -1) { |
905 | sigma_add(".#.", net1->sigma); |
906 | sigma_sort(net1); |
907 | } |
908 | } |
909 | |
910 | sigma_1 = net1->sigma; |
911 | sigma_2 = net2->sigma; |
912 | |
913 | sigmasizes = sigma_max(sigma_1) + sigma_max(sigma_2) + 3; |
914 | |
915 | mapping_1 = malloc(sizeof(int)*sigmasizes); |
916 | mapping_2 = malloc(sizeof(int)*sigmasizes); |
917 | |
918 | /* Fill mergesigma */ |
919 | |
920 | mergesigma = malloc(sizeof(struct mergesigma)); |
921 | mergesigma->number = -1; |
922 | mergesigma->symbol = NULL((void*)0); |
923 | mergesigma->next = NULL((void*)0); |
924 | start_mergesigma = mergesigma; |
925 | |
926 | /* Loop over sigma 1, sigma 2 */ |
927 | for (;;) { |
928 | if (sigma_1 == NULL((void*)0)) |
929 | end_1 = 1; |
930 | if (sigma_2 == NULL((void*)0)) |
931 | end_2 = 1; |
932 | if (end_1 && end_2) |
933 | break; |
934 | if (end_2) { |
935 | /* Treating only 1 now */ |
936 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 1); |
937 | *(mapping_1+(sigma_1->number)) = mergesigma->number; |
938 | sigma_1 = sigma_1->next; |
939 | equal = 0; |
940 | continue; |
941 | } |
942 | else if (end_1) { |
943 | /* Treating only 2 now */ |
944 | mergesigma = add_to_mergesigma(mergesigma, sigma_2, 2); |
945 | *(mapping_2+(sigma_2->number)) = mergesigma->number; |
946 | sigma_2 = sigma_2->next; |
947 | equal = 0; |
948 | continue; |
949 | } |
950 | |
951 | else { |
952 | |
953 | /* Both alive */ |
954 | |
955 | /* 1 or 2 contains special characters */ |
956 | if ((sigma_1->number <= IDENTITY2) || (sigma_2->number <= IDENTITY2)) { |
957 | |
958 | /* Treating zeros or unknowns */ |
959 | |
960 | if ((sigma_1->number == UNKNOWN1) || (sigma_1->number == IDENTITY2)) |
961 | unknown_1 = 1; |
962 | if ((sigma_2->number == UNKNOWN1) || (sigma_2->number == IDENTITY2)) |
963 | unknown_2 = 1; |
964 | |
965 | if (sigma_1->number == sigma_2->number) { |
966 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 3); |
967 | sigma_1 = sigma_1->next; |
968 | sigma_2 = sigma_2->next; |
969 | } |
970 | else if (sigma_1->number < sigma_2->number) { |
971 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 1); |
972 | sigma_1 = sigma_1->next; |
973 | equal = 0; |
974 | } |
975 | else { |
976 | mergesigma = add_to_mergesigma(mergesigma, sigma_2, 2); |
977 | sigma_2 = sigma_2->next; |
978 | equal = 0; |
979 | } |
980 | continue; |
981 | } |
982 | /* Both contain non-special chars */ |
983 | if (strcmp(sigma_1->symbol, sigma_2->symbol) == 0) { |
984 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 3); |
985 | /* Add symbol numbers to mapping */ |
986 | *(mapping_1+(sigma_1->number)) = mergesigma->number; |
987 | *(mapping_2+(sigma_2->number)) = mergesigma->number; |
988 | |
989 | sigma_1 = sigma_1->next; |
990 | sigma_2 = sigma_2->next; |
991 | } |
992 | else if (strcmp(sigma_1->symbol, sigma_2->symbol) < 0) { |
993 | mergesigma = add_to_mergesigma(mergesigma, sigma_1, 1); |
994 | *(mapping_1+(sigma_1->number)) = mergesigma->number; |
995 | sigma_1 = sigma_1->next; |
996 | equal = 0; |
997 | } |
998 | else { |
999 | mergesigma = add_to_mergesigma(mergesigma, sigma_2, 2); |
1000 | *(mapping_2+(sigma_2->number)) = mergesigma->number; |
1001 | sigma_2 = sigma_2->next; |
1002 | equal = 0; |
1003 | } |
1004 | continue; |
1005 | } |
1006 | } |
1007 | |
1008 | /* Go over both net1 and net2 and replace arc numbers with new mappings */ |
1009 | |
1010 | fsm_state = net1->states; |
1011 | for (i=0; (fsm_state+i)->state_no != -1; i++) { |
1012 | if ((fsm_state+i)->in > 2) |
1013 | (fsm_state+i)->in = *(mapping_1+(fsm_state+i)->in); |
1014 | if ((fsm_state+i)->out > 2) |
1015 | (fsm_state+i)->out = *(mapping_1+(fsm_state+i)->out); |
1016 | } |
1017 | fsm_state = net2->states; |
1018 | for (i=0; (fsm_state+i)->state_no != -1; i++) { |
1019 | if ((fsm_state+i)->in > 2) |
1020 | (fsm_state+i)->in = *(mapping_2+(fsm_state+i)->in); |
1021 | if ((fsm_state+i)->out > 2) |
1022 | (fsm_state+i)->out = *(mapping_2+(fsm_state+i)->out); |
1023 | } |
1024 | |
1025 | /* Copy mergesigma to net1, net2 */ |
1026 | |
1027 | new_sigma_1 = copy_mergesigma(start_mergesigma); |
1028 | new_sigma_2 = copy_mergesigma(start_mergesigma); |
1029 | |
1030 | fsm_sigma_destroy(net1->sigma); |
1031 | fsm_sigma_destroy(net2->sigma); |
1032 | |
1033 | net1->sigma = new_sigma_1; |
1034 | net2->sigma = new_sigma_2; |
1035 | |
1036 | /* Expand on ?, ?:x, y:? */ |
1037 | |
1038 | if (unknown_1 && !equal) { |
1039 | /* Expand net 1 */ |
1040 | fsm_state = net1->states; |
1041 | net_lines = find_arccount(net1->states); |
1042 | for(mergesigma = start_mergesigma; mergesigma != NULL((void*)0); mergesigma=mergesigma->next) { |
1043 | if(mergesigma->presence == 2) { |
1044 | net_unk++; |
1045 | } |
1046 | } |
1047 | for(net_adds = 0, i=0; (fsm_state+i)->state_no != -1; i++) { |
1048 | if ((fsm_state+i)->in == IDENTITY2) |
1049 | net_adds += net_unk; |
1050 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out != UNKNOWN1)) |
1051 | net_adds += net_unk; |
1052 | if (((fsm_state+i)->out == UNKNOWN1) && ((fsm_state+i)->in != UNKNOWN1)) |
1053 | net_adds += net_unk; |
1054 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out == UNKNOWN1)) |
1055 | net_adds += net_unk*net_unk - net_unk + 2*net_unk; |
1056 | } |
1057 | |
1058 | new_1_state = malloc(sizeof(struct fsm_state)*(net_adds+net_lines+1)); |
1059 | for(i=0,j=0; (fsm_state+i)->state_no != -1; i++) { |
1060 | |
1061 | if ((fsm_state+i)->in == IDENTITY2) { |
1062 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1063 | j++; |
1064 | for (mergesigma=start_mergesigma; mergesigma != NULL((void*)0); mergesigma=mergesigma->next) { |
1065 | if ((mergesigma->presence == 2) && (mergesigma->number > IDENTITY2)) { |
1066 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1067 | j++; |
1068 | } |
1069 | } |
1070 | } |
1071 | |
1072 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out != UNKNOWN1) { |
1073 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1074 | j++; |
1075 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
1076 | if ((mergesigma->presence == 2) && (mergesigma->number > IDENTITY2)) { |
1077 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, mergesigma->number, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1078 | j++; |
1079 | } |
1080 | } |
1081 | } |
1082 | |
1083 | if (((fsm_state+i)->in != UNKNOWN1) && ((fsm_state+i)->out == UNKNOWN1)) { |
1084 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1085 | j++; |
1086 | for (mergesigma=start_mergesigma; mergesigma != NULL((void*)0); mergesigma = mergesigma->next) { |
1087 | if ((mergesigma->presence == 2) && (mergesigma->number > IDENTITY2)) { |
1088 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1089 | j++; |
1090 | } |
1091 | } |
1092 | } |
1093 | |
1094 | /* Replace ?:? with ?:[all unknowns] [all unknowns]:? and [all unknowns]:[all unknowns] where a != b */ |
1095 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out == UNKNOWN1) { |
1096 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1097 | j++; |
1098 | for (mergesigma2=start_mergesigma; mergesigma2 != NULL((void*)0) ; mergesigma2 = mergesigma2->next) { |
1099 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
1100 | if (((mergesigma->presence == 2 && mergesigma2->presence == 2 && mergesigma->number > IDENTITY2 && mergesigma2->number > IDENTITY2) || (mergesigma->number == UNKNOWN1 && mergesigma2->number > IDENTITY2 && mergesigma2->presence == 2) || (mergesigma2->number == UNKNOWN1 && mergesigma->number > IDENTITY2 && mergesigma->presence == 2)) && mergesigma->number != mergesigma2->number) { |
1101 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma2->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1102 | j++; |
1103 | } |
1104 | } |
1105 | } |
1106 | } |
1107 | |
1108 | /* Simply copy arcs that are not IDENTITY or UNKNOWN */ |
1109 | if (((fsm_state+i)->in > IDENTITY2 || (fsm_state+i)->in == EPSILON0) && ((fsm_state+i)->out > IDENTITY2 || (fsm_state+i)->out == EPSILON0)) { |
1110 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1111 | j++; |
1112 | } |
1113 | |
1114 | if ((fsm_state+i)->in == -1) { |
1115 | add_fsm_arc(new_1_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1116 | j++; |
1117 | } |
1118 | } |
1119 | |
1120 | add_fsm_arc(new_1_state, j, -1, -1, -1, -1, -1, -1); |
1121 | free(net1->states); |
1122 | net1->states = new_1_state; |
1123 | } |
1124 | |
1125 | if (unknown_2 && !equal) { |
1126 | /* Expand net 2 */ |
1127 | fsm_state = net2->states; |
1128 | net_lines = find_arccount(net2->states); |
1129 | for(net_unk = 0, mergesigma = start_mergesigma; mergesigma != NULL((void*)0); mergesigma=mergesigma->next) { |
1130 | if(mergesigma->presence == 1) { |
1131 | net_unk++; |
1132 | } |
1133 | } |
1134 | |
1135 | for(net_adds = 0, i=0; (fsm_state+i)->state_no != -1; i++) { |
1136 | if ((fsm_state+i)->in == IDENTITY2) |
1137 | net_adds += net_unk; |
1138 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out != UNKNOWN1)) |
1139 | net_adds += net_unk; |
1140 | if (((fsm_state+i)->out == UNKNOWN1) && ((fsm_state+i)->in != UNKNOWN1)) |
1141 | net_adds += net_unk; |
1142 | if (((fsm_state+i)->in == UNKNOWN1) && ((fsm_state+i)->out == UNKNOWN1)) |
1143 | net_adds += net_unk*net_unk - net_unk + 2*net_unk; |
1144 | } |
1145 | |
1146 | /* We need net_add new lines in fsm_state */ |
1147 | new_2_state = malloc(sizeof(struct fsm_state)*(net_adds+net_lines+1)); |
1148 | for(i=0,j=0; (fsm_state+i)->state_no != -1; i++) { |
1149 | |
1150 | if ((fsm_state+i)->in == IDENTITY2) { |
1151 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1152 | j++; |
1153 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
1154 | if ((mergesigma->presence == 1) && (mergesigma->number > IDENTITY2)) { |
1155 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1156 | j++; |
1157 | } |
1158 | } |
1159 | } |
1160 | |
1161 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out != UNKNOWN1) { |
1162 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1163 | j++; |
1164 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
1165 | if (mergesigma->presence == 1 && mergesigma->number > IDENTITY2) { |
1166 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, mergesigma->number, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1167 | j++; |
1168 | } |
1169 | } |
1170 | } |
1171 | |
1172 | if ((fsm_state+i)->in != UNKNOWN1 && (fsm_state+i)->out == UNKNOWN1) { |
1173 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1174 | j++; |
1175 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
1176 | if ((mergesigma->presence == 1) && (mergesigma->number > IDENTITY2)) { |
1177 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, mergesigma->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1178 | j++; |
1179 | } |
1180 | } |
1181 | } |
1182 | |
1183 | if ((fsm_state+i)->in == UNKNOWN1 && (fsm_state+i)->out == UNKNOWN1) { |
1184 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1185 | j++; |
1186 | for (mergesigma2=start_mergesigma; mergesigma2 != NULL((void*)0) ; mergesigma2 = mergesigma2->next) { |
1187 | for (mergesigma=start_mergesigma; mergesigma!=NULL((void*)0); mergesigma=mergesigma->next) { |
1188 | if (((mergesigma->presence == 1 && mergesigma2->presence == 1 && mergesigma->number > IDENTITY2 && mergesigma2->number > IDENTITY2) || (mergesigma->number == UNKNOWN1 && mergesigma2->number > IDENTITY2 && mergesigma2->presence == 1) || (mergesigma2->number == UNKNOWN1 && mergesigma->number > IDENTITY2 && mergesigma->presence == 1)) && mergesigma->number != mergesigma2->number) { |
1189 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, mergesigma->number, mergesigma2->number, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1190 | j++; |
1191 | } |
1192 | } |
1193 | } |
1194 | } |
1195 | |
1196 | /* Simply copy arcs that are not IDENTITY or UNKNOWN */ |
1197 | if (((fsm_state+i)->in > IDENTITY2 || (fsm_state+i)->in == EPSILON0) && ((fsm_state+i)->out > IDENTITY2 || (fsm_state+i)->out == EPSILON0)) { |
1198 | |
1199 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1200 | j++; |
1201 | } |
1202 | |
1203 | if ((fsm_state+i)->in == -1) { |
1204 | add_fsm_arc(new_2_state, j, (fsm_state+i)->state_no, (fsm_state+i)->in, (fsm_state+i)->out, (fsm_state+i)->target, (fsm_state+i)->final_state, (fsm_state+i)->start_state); |
1205 | j++; |
1206 | } |
1207 | } |
1208 | |
1209 | add_fsm_arc(new_2_state, j, -1, -1, -1, -1, -1, -1); |
1210 | free(net2->states); |
1211 | net2->states = new_2_state; |
1212 | } |
1213 | free(mapping_1); |
1214 | free(mapping_2); |
1215 | |
1216 | /* Free structure */ |
1217 | for (mergesigma2 = NULL((void*)0); start_mergesigma != NULL((void*)0); ) { |
1218 | mergesigma2 = start_mergesigma; |
1219 | start_mergesigma = start_mergesigma->next; |
1220 | free(mergesigma2); |
1221 | } |
1222 | } |
1223 | |
1224 | |
1225 | int add_fsm_arc(struct fsm_state *fsm, int offset, int state_no, int in, int out, int target, int final_state, int start_state) { |
1226 | |
1227 | (fsm+offset)->state_no = state_no; |
1228 | (fsm+offset)->in = in; |
1229 | (fsm+offset)->out= out; |
1230 | (fsm+offset)->target = target; |
1231 | (fsm+offset)->final_state = final_state; |
1232 | (fsm+offset)->start_state = start_state; |
1233 | offset++; |
1234 | return(offset); |
1235 | } |
1236 | |
1237 | |
1238 | void fsm_count(struct fsm *net) { |
1239 | struct fsm_state *fsm; |
1240 | int i, linecount, arccount, oldstate, finalcount, maxstate; |
1241 | linecount = arccount = finalcount = maxstate = 0; |
1242 | |
1243 | oldstate = -1; |
1244 | |
1245 | fsm = net->states; |
1246 | for (i=0; (fsm+i)->state_no != -1; i++) { |
1247 | if ((fsm+i)->state_no > maxstate) |
1248 | maxstate = (fsm+i)->state_no; |
1249 | |
1250 | linecount++; |
1251 | if ((fsm+i)->target != -1) { |
1252 | arccount++; |
1253 | // if (((fsm+i)->in != (fsm+i)->out) || ((fsm+i)->in == UNKNOWN) || ((fsm+i)->out == UNKNOWN)) |
1254 | // arity = 2; |
1255 | } |
1256 | if ((fsm+i)->state_no != oldstate) { |
1257 | if ((fsm+i)->final_state) { |
1258 | finalcount++; |
1259 | } |
1260 | oldstate = (fsm+i)->state_no; |
1261 | } |
1262 | } |
1263 | |
1264 | linecount++; |
1265 | net->statecount = maxstate+1; |
1266 | net->linecount = linecount; |
1267 | net->arccount = arccount; |
1268 | net->finalcount = finalcount; |
1269 | } |
1270 | |
1271 | static void fsm_add_to_states(struct fsm *net, int add) { |
1272 | struct fsm_state *fsm; |
1273 | int i; |
1274 | |
1275 | fsm=net->states; |
1276 | for(i=0; (fsm+i)->state_no != -1; i++) { |
1277 | (fsm+i)->state_no = (fsm+i)->state_no + add; |
1278 | if ((fsm+i)->target != -1) |
1279 | (fsm+i)->target = (fsm+i)->target + add; |
1280 | } |
1281 | } |
1282 | |
1283 | struct fsm *fsm_concat_m_n(struct fsm *net1, int m, int n) { |
1284 | struct fsm *acc; |
1285 | int i; |
1286 | acc = fsm_empty_string(); |
1287 | for (i = 1; i <= n ;i++) { |
1288 | if (i > m) |
1289 | acc = fsm_concat(acc, fsm_optionality(fsm_copy(net1))); |
1290 | else |
1291 | acc = fsm_concat(acc, fsm_copy(net1)); |
1292 | } |
1293 | fsm_destroy(net1); |
1294 | return(acc); |
1295 | } |
1296 | |
1297 | struct fsm *fsm_concat_n(struct fsm *net1, int n) { |
1298 | return(fsm_concat_m_n(net1,n,n)); |
1299 | } |
1300 | |
1301 | struct fsm *fsm_concat(struct fsm *net1, struct fsm *net2) { |
1302 | struct fsm_state *fsm1, *fsm2, *new_fsm; |
1303 | int i,j,current_final; |
1304 | |
1305 | fsm_merge_sigma(net1, net2); |
1306 | |
1307 | fsm1 = net1->states; |
1308 | fsm2 = net2->states; |
1309 | fsm_count(net1); |
1310 | fsm_count(net2); |
1311 | /* The concatenation of a language with no final state should yield the empty language */ |
1312 | if ((net1->finalcount == 0) || (net2->finalcount == 0)) { |
1313 | fsm_destroy(net1); |
1314 | fsm_destroy(net2); |
1315 | net1 = fsm_empty_set(); |
1316 | return(net1); |
1317 | } |
1318 | |
1319 | /* Add |fsm1| states to the state numbers of fsm2 */ |
1320 | fsm_add_to_states(net2, net1->statecount); |
1321 | |
1322 | new_fsm = malloc(((sizeof(struct fsm_state))*(net1->linecount + net2->linecount + net1->finalcount + 2 ))); |
1323 | current_final = -1; |
1324 | /* Copy fsm1, fsm2 after each other, adding appropriate epsilon arcs */ |
1325 | for(i=0,j=0; (fsm1+i)->state_no != -1; i++) { |
1326 | if (((fsm1+i)->final_state == 1) && ((fsm1+i)->state_no != current_final)) { |
1327 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, EPSILON0, EPSILON0, net1->statecount, 0, (fsm1+i)->start_state); |
1328 | current_final = (fsm1+i)->state_no; |
1329 | j++; |
1330 | } |
1331 | if (!(((fsm1+i)->target == -1) && ((fsm1+i)->final_state == 1))) { |
1332 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, (fsm1+i)->in, (fsm1+i)->out, (fsm1+i)->target, 0, (fsm1+i)->start_state); |
1333 | j++; |
1334 | } |
1335 | } |
1336 | |
1337 | for(i=0; (fsm2+i)->state_no != -1; i++, j++) { |
1338 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no, (fsm2+i)->in, (fsm2+i)->out, (fsm2+i)->target, (fsm2+i)->final_state, 0); |
1339 | } |
1340 | add_fsm_arc(new_fsm, j, -1, -1, -1, -1, -1, -1); |
1341 | free(net1->states); |
1342 | fsm_destroy(net2); |
1343 | net1->states = new_fsm; |
1344 | if (sigma_find_number(EPSILON0, net1->sigma) == -1) { |
1345 | sigma_add_special(EPSILON0, net1->sigma); |
1346 | } |
1347 | fsm_count(net1); |
1348 | net1->is_epsilon_free = NO0; |
1349 | net1->is_deterministic = NO0; |
1350 | net1->is_minimized = NO0; |
1351 | net1->is_pruned = NO0; |
1352 | return(fsm_minimize(net1)); |
1353 | } |
1354 | |
1355 | struct fsm *fsm_union(struct fsm *net1, struct fsm *net2) { |
1356 | struct fsm_state *new_fsm, *fsm1, *fsm2; |
1357 | int i, j, net1_offset, net2_offset, new_target, arccount; |
1358 | |
1359 | fsm_merge_sigma(net1, net2); |
1360 | |
1361 | fsm_count(net1); |
1362 | fsm_count(net2); |
1363 | |
1364 | fsm1 = net1->states; |
1365 | fsm2 = net2->states; |
1366 | |
1367 | net1_offset = 1; |
1368 | net2_offset = net1->statecount + 1; |
1369 | new_fsm = malloc((net1->linecount + net2->linecount + 2) * sizeof(struct fsm_state)); |
1370 | |
1371 | j = 0; |
1372 | |
1373 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, net1_offset, 0 , 1); |
1374 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, net2_offset, 0 , 1); |
1375 | arccount = 2; |
1376 | for (i=0 ; (fsm1+i)->state_no != -1; i++) { |
1377 | new_target = (fsm1+i)->target == -1 ? -1 : (fsm1+i)->target + net1_offset; |
1378 | add_fsm_arc(new_fsm, j++, (fsm1+i)->state_no + net1_offset, (fsm1+i)->in, (fsm1+i)->out, new_target, (fsm1+i)->final_state, 0); |
1379 | if (new_target != -1) arccount++; |
1380 | } |
1381 | for (i=0 ; (fsm2+i)->state_no != -1; i++) { |
1382 | new_target = (fsm2+i)->target == -1 ? -1 : (fsm2+i)->target + net2_offset; |
1383 | add_fsm_arc(new_fsm, j++, (fsm2+i)->state_no + net2_offset, (fsm2+i)->in, (fsm2+i)->out, new_target, (fsm2+i)->final_state, 0); |
1384 | if (new_target != -1) arccount++; |
1385 | } |
1386 | add_fsm_arc(new_fsm, j++, -1, -1, -1, -1, -1, -1); |
1387 | free(net1->states); |
1388 | net1->states = new_fsm; |
1389 | net1->statecount = net1->statecount + net2->statecount + 1; |
1390 | net1->linecount = j; |
1391 | net1->arccount = arccount; |
1392 | net1->finalcount = net1->finalcount + net2->finalcount; |
1393 | fsm_destroy(net2); |
1394 | fsm_update_flags(net1,NO0,NO0,NO0,NO0,UNK2,NO0); |
1395 | if (sigma_find_number(EPSILON0, net1->sigma) == -1) { |
1396 | sigma_add_special(EPSILON0, net1->sigma); |
1397 | } |
1398 | return(net1); |
1399 | } |
1400 | |
1401 | struct fsm *fsm_completes(struct fsm *net, int operation) { |
1402 | struct fsm_state *fsm, *new_fsm; |
1403 | int i, j, offset, statecount, sigsize, *state_table, sink_state, target, last_sigma = 0, arccount = 0, incomplete; |
1404 | short *starts, *finals, *sinks; |
1405 | |
1406 | /* TODO: this currently relies on that the sigma is gap-free in its numbering */ |
1407 | /* which can't always be counted on, especially when reading external machines */ |
1408 | |
1409 | /* TODO: check arity */ |
1410 | |
1411 | if (net->is_minimized != YES1) |
1412 | net = fsm_minimize(net); |
1413 | |
1414 | incomplete = 0; |
1415 | fsm = net->states; |
1416 | if (sigma_find_number(UNKNOWN1, net->sigma) != -1) { |
1417 | sigma_remove("@_UNKNOWN_SYMBOL_@",net->sigma); |
1418 | } |
1419 | if (sigma_find_number(IDENTITY2, net->sigma) == -1) { |
1420 | sigma_add_special(IDENTITY2, net->sigma); |
1421 | incomplete = 1; |
1422 | } |
1423 | |
1424 | sigsize = sigma_size(net->sigma); |
1425 | last_sigma = sigma_max(net->sigma); |
1426 | |
1427 | if (sigma_find_number(EPSILON0, net->sigma) != -1) |
1428 | sigsize--; |
1429 | |
1430 | fsm_count(net); |
1431 | statecount = net->statecount; |
1432 | starts = malloc(sizeof(short)*(statecount+1)); /* +1 for sink state */ |
1433 | finals = malloc(sizeof(short)*(statecount+1)); |
1434 | sinks = malloc(sizeof(short)*(statecount+1)); |
1435 | |
1436 | /* Init starts, finals, sinks arrays */ |
1437 | |
1438 | for (i=0; i < statecount; i++) { |
1439 | *(sinks+i) = 1; |
1440 | *(finals+i) = 0; |
1441 | *(starts+i) = 0; |
1442 | } |
1443 | for (i=0; (fsm+i)->state_no != -1; i++) { |
1444 | if (operation == COMPLEMENT0) { |
1445 | if ((fsm+i)->final_state == 1) { |
1446 | (fsm+i)->final_state = 0; |
1447 | } else if ((fsm+i)->final_state == 0) { |
1448 | (fsm+i)->final_state = 1; |
1449 | } |
1450 | } |
1451 | if ((fsm+i)->target != -1) |
1452 | arccount++; |
1453 | starts[(fsm+i)->state_no] = (fsm+i)->start_state; |
1454 | finals[(fsm+i)->state_no] = (fsm+i)->final_state; |
1455 | if ((fsm+i)->final_state && operation != COMPLEMENT0) |
1456 | *(sinks+((fsm+i)->state_no)) = 0; |
1457 | if ((fsm+i)->final_state == 0 && (operation == COMPLEMENT0)) |
1458 | *(sinks+((fsm+i)->state_no)) = 0; |
1459 | if (((fsm+i)->target != -1) && ((fsm+i)->state_no != (fsm+i)->target)) |
1460 | *(sinks+((fsm+i)->state_no)) = 0; |
1461 | } |
1462 | |
1463 | net->is_loop_free = NO0; |
1464 | net->pathcount = PATHCOUNT_CYCLIC-1; |
1465 | |
1466 | if (incomplete == 0 && (arccount == (sigsize)*statecount)) { |
1467 | /* printf("Already complete!\n"); */ |
1468 | |
1469 | /* if (operation == COMPLEMENT) { */ |
1470 | /* for (i=0; (fsm+i)->state_no != -1; i++) { */ |
1471 | /* if ((fsm+i)->final_state) { */ |
1472 | /* (fsm+i)->final_state = 0; */ |
1473 | /* } else { */ |
1474 | /* (fsm+i)->final_state = 1; */ |
1475 | /* } */ |
1476 | /* } */ |
1477 | /* } */ |
1478 | free(starts); |
1479 | free(finals); |
1480 | free(sinks); |
1481 | net->is_completed = YES1; |
1482 | net->is_minimized = YES1; |
1483 | net->is_pruned = NO0; |
1484 | net->is_deterministic = YES1; |
1485 | return(net); |
1486 | } |
1487 | |
1488 | /* Find an existing sink state, or invent a new one */ |
1489 | |
1490 | for (i=0, sink_state = -1; i<statecount; i++) { |
1491 | if (sinks[i] == 1) { |
1492 | sink_state = i; |
1493 | break; |
1494 | } |
1495 | } |
1496 | |
1497 | if (sink_state == -1) { |
1498 | sink_state = statecount; |
1499 | *(starts+sink_state) = 0; |
1500 | if (operation == COMPLEMENT0) { |
1501 | *(finals+sink_state) = 1; |
1502 | } else { |
1503 | *(finals+sink_state) = 0; |
1504 | } |
1505 | statecount++; |
1506 | } |
1507 | |
1508 | |
1509 | /* We can build a state table without memory problems since the size */ |
1510 | /* of the completed machine will be |Sigma| * |States| in all cases */ |
1511 | |
1512 | sigsize += 2; |
1513 | |
1514 | state_table = malloc(sizeof(int)*sigsize*statecount); |
1515 | |
1516 | /* Init state table */ |
1517 | /* i = state #, j = sigma # */ |
1518 | for (i=0; i<statecount; i++) { |
1519 | for (j=0; j<sigsize; j++) { |
1520 | *(state_table+(i*sigsize+j)) = -1; |
1521 | } |
1522 | } |
1523 | |
1524 | for (i=0; (fsm+i)->state_no != -1; i++) { |
1525 | if ((fsm+i)->target != -1) { |
1526 | *(state_table+(((fsm+i)->state_no)*sigsize+((fsm+i)->in))) = (fsm+i)->target; |
1527 | } |
1528 | } |
1529 | /* Add looping arcs from and to sink state */ |
1530 | for (j=2; j<=last_sigma; j++) |
1531 | *(state_table+(sink_state*sigsize+j)) = sink_state; |
1532 | /* Add missing arcs to sink state from all states */ |
1533 | for (i=0; i<statecount; i++) { |
1534 | for (j=2; j<=last_sigma; j++) { |
1535 | if (*(state_table+(i*sigsize+j)) == -1) |
1536 | *(state_table+(i*sigsize+j)) = sink_state; |
1537 | } |
1538 | } |
1539 | |
1540 | new_fsm = malloc(sizeof(struct fsm_state)*(sigsize*statecount+1)); |
1541 | |
1542 | /* Complement requires toggling final, nonfinal states */ |
1543 | /* if (operation == COMPLEMENT) */ |
1544 | /* for (i=0; i < statecount; i++) */ |
1545 | /* *(finals+i) = *(finals+i) == 0 ? 1 : 0; */ |
1546 | |
1547 | for (i=0, offset = 0; i<statecount; i++) { |
1548 | for (j=2; j<=last_sigma; j++) { |
1549 | target = *(state_table+(i*sigsize+j)) == -1 ? sink_state : *(state_table+(i*sigsize+j)); |
1550 | add_fsm_arc(new_fsm, offset, i, j, j, target, finals[i], starts[i]); |
1551 | offset++; |
1552 | } |
1553 | } |
1554 | add_fsm_arc(new_fsm, offset, -1, -1, -1, -1, -1, -1); |
1555 | offset++; |
1556 | free(net->states); |
1557 | net->states = new_fsm; |
1558 | free(starts); |
1559 | free(finals); |
1560 | free(sinks); |
1561 | free(state_table); |
1562 | net->is_minimized = NO0; |
1563 | net->is_pruned = NO0; |
1564 | net->is_completed = YES1; |
1565 | net->statecount = statecount; |
1566 | return(net); |
1567 | } |
1568 | |
1569 | struct fsm *fsm_complete(struct fsm *net) { |
1570 | return(fsm_completes(net, COMPLETE1)); |
1571 | } |
1572 | |
1573 | struct fsm *fsm_complement(struct fsm *net) { |
1574 | return(fsm_completes(net, COMPLEMENT0)); |
1575 | } |
1576 | |
1577 | struct fsm *fsm_kleene_closure(struct fsm *net, int operation) { |
1578 | struct fsm_state *fsm, *new_fsm; |
1579 | int i, j, laststate, curr_state, curr_target, arccount; |
1580 | |
1581 | if (operation == OPTIONALITY2) { |
1582 | return(fsm_union(net,fsm_empty_string())); |
1583 | } |
1584 | |
1585 | net = fsm_minimize(net); |
1586 | fsm_count(net); |
1587 | |
1588 | fsm = net->states; |
1589 | |
1590 | new_fsm = malloc( (net->linecount + net->finalcount + 1) * sizeof(struct fsm_state)); |
1591 | |
1592 | j = 0; |
1593 | if (operation == KLEENE_STAR0) |
1594 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, 1, 1, 1); |
1595 | if (operation == KLEENE_PLUS1) |
1596 | add_fsm_arc(new_fsm, j++, 0, EPSILON0, EPSILON0, 1, 0, 1); |
1597 | laststate = 0; |
1598 | arccount = 1; |
1599 | for (i = 0 ; (fsm+i)->state_no != -1; i++, laststate = curr_state) { |
1600 | curr_state = (fsm+i)->state_no + 1; |
1601 | curr_target = (fsm+i)->target == -1 ? -1 : (fsm+i)->target + 1; |
1602 | if (curr_target == -1 && (fsm+i)->final_state == 1) { |
1603 | add_fsm_arc(new_fsm, j++, curr_state, EPSILON0, EPSILON0, 0, 1, 0); |
1604 | arccount++; |
1605 | continue; |
1606 | } |
1607 | if (curr_state != laststate && (fsm+i)->final_state == 1) { |
1608 | arccount++; |
1609 | add_fsm_arc(new_fsm, j++, curr_state, EPSILON0, EPSILON0, 0, 1, 0); |
1610 | } |
1611 | add_fsm_arc(new_fsm, j++, curr_state, (fsm+i)->in, (fsm+i)->out, curr_target, (fsm+i)->final_state, 0); |
1612 | if (curr_target != -1) arccount++; |
1613 | } |
1614 | add_fsm_arc(new_fsm, j++, -1,-1,-1,-1,-1,-1); |
1615 | net->statecount = net->statecount+1; |
1616 | net->linecount = j; |
1617 | net->finalcount = operation == KLEENE_STAR0 ? net->finalcount+1 : net->finalcount; |
1618 | net->arccount = arccount; |
1619 | net->pathcount = PATHCOUNT_UNKNOWN-3; |
1620 | free(net->states); |
1621 | net->states = new_fsm; |
1622 | if (sigma_find_number(EPSILON0, net->sigma) == -1) |
1623 | sigma_add_special(EPSILON0, net->sigma); |
1624 | fsm_update_flags(net,NO0,NO0,NO0,NO0,UNK2,NO0); |
1625 | return(net); |
1626 | } |
1627 | |
1628 | char *fsm_network_to_char(struct fsm *net) { |
1629 | struct sigma *sigma, *sigprev; |
1630 | sigma = net->sigma; |
1631 | if (sigma->number == -1) { |
1632 | return NULL((void*)0); |
1633 | } |
1634 | for (; sigma != NULL((void*)0) && sigma->number != -1 ; sigma = sigma->next) { |
1635 | sigprev = sigma; |
1636 | } |
1637 | return(strdup(sigprev->symbol)); |
1638 | } |
1639 | |
1640 | struct fsm *fsm_substitute_label(struct fsm *net, char *original, struct fsm *substitute) { |
1641 | |
1642 | struct fsm *outnet, *subnet2; |
1643 | struct fsm_read_handle *inh, *subh, *subh2; |
1644 | struct fsm_construct_handle *outh; |
1645 | char *subin, *subout; |
1646 | int i, repsym, source, target, in, out, addstate1, addstate2; |
1647 | |
1648 | fsm_merge_sigma(net, substitute); |
1649 | addstate1 = net->statecount; |
1650 | addstate2 = substitute->statecount; |
1651 | |
1652 | inh = fsm_read_init(net); |
1653 | subh = fsm_read_init(substitute); |
1654 | repsym = fsm_get_symbol_number(inh, original); |
1655 | if (repsym == -1) { |
1656 | fsm_read_done(inh); |
1657 | return(net); |
1658 | } |
1659 | outh = fsm_construct_init(net->name); |
1660 | fsm_construct_copy_sigma(outh, net->sigma); |
1661 | while (fsm_get_next_arc(inh)) { |
1662 | source = fsm_get_arc_source(inh); |
1663 | target = fsm_get_arc_target(inh); |
1664 | in = fsm_get_arc_num_in(inh); |
1665 | out = fsm_get_arc_num_out(inh); |
1666 | |
1667 | /* Double-sided arc, splice in substitute network */ |
1668 | if (in == repsym && out == repsym) { |
1669 | fsm_read_reset(subh); |
1670 | fsm_construct_add_arc_nums(outh, source, addstate1, EPSILON0, EPSILON0); |
1671 | while (fsm_get_next_arc(subh)) { |
1672 | source = fsm_get_arc_source(subh); |
1673 | target = fsm_get_arc_target(subh); |
1674 | subin = fsm_get_arc_in(subh); |
1675 | subout = fsm_get_arc_out(subh); |
1676 | fsm_construct_add_arc(outh, source+addstate1, target+addstate1, subin, subout); |
1677 | } |
1678 | while ((i = fsm_get_next_final(subh)) != -1) { |
1679 | target = fsm_get_arc_target(inh); |
1680 | fsm_construct_add_arc_nums(outh, addstate1+i, target, EPSILON0, EPSILON0); |
1681 | } |
1682 | addstate1 = addstate1 + addstate2; |
1683 | /* One-sided replace, splice in repsym .x. sub or sub .x. repsym */ |
1684 | } else if (in == repsym || out == repsym) { |
1685 | if (in == repsym) { |
1686 | subnet2 = fsm_minimize(fsm_cross_product(fsm_copy(substitute), fsm_symbol(fsm_get_arc_out(inh)))); |
1687 | } else { |
1688 | subnet2 = fsm_minimize(fsm_cross_product(fsm_symbol(fsm_get_arc_in(inh)),fsm_copy(substitute))); |
1689 | } |
1690 | fsm_construct_add_arc_nums(outh, source, addstate1, EPSILON0, EPSILON0); |
1691 | subh2 = fsm_read_init(subnet2); |
1692 | while (fsm_get_next_arc(subh2)) { |
1693 | source = fsm_get_arc_source(subh2); |
1694 | target = fsm_get_arc_target(subh2); |
1695 | subin = fsm_get_arc_in(subh2); |
1696 | subout = fsm_get_arc_out(subh2); |
1697 | fsm_construct_add_arc(outh, source+addstate1, target+addstate1, subin, subout); |
1698 | } |
1699 | while ((i = fsm_get_next_final(subh2)) != -1) { |
1700 | target = fsm_get_arc_target(inh); |
1701 | fsm_construct_add_arc_nums(outh, addstate1+i, target, EPSILON0, EPSILON0); |
1702 | } |
1703 | fsm_read_done(subh2); |
1704 | addstate1 = addstate1 + subnet2->statecount; |
1705 | fsm_destroy(subnet2); |
1706 | } else { |
1707 | /* Default, just copy arc */ |
1708 | fsm_construct_add_arc_nums(outh, source, target, in, out); |
1709 | } |
1710 | } |
1711 | |
1712 | while ((i = fsm_get_next_final(inh)) != -1) { |
1713 | fsm_construct_set_final(outh, i); |
1714 | } |
1715 | while ((i = fsm_get_next_initial(inh)) != -1) { |
1716 | fsm_construct_set_initial(outh, i); |
1717 | } |
1718 | fsm_read_done(inh); |
1719 | fsm_read_done(subh); |
1720 | outnet = fsm_construct_done(outh); |
1721 | return(outnet); |
1722 | } |
1723 | |
1724 | struct fsm *fsm_substitute_symbol(struct fsm *net, char *original, char *substitute) { |
1725 | struct fsm_state *fsm; |
1726 | int i,o,s = EPSILON0; |
1727 | if (strcmp(original,substitute) == 0) |
1728 | return(net); |
1729 | if ((o = sigma_find(original, net->sigma)) == -1) { |
1730 | //fprintf(stderr, "\nSymbol '%s' not found in network!\n", original); |
1731 | return(net); |
1732 | } |
1733 | if (strcmp(substitute,"0") == 0) |
1734 | s = EPSILON0; |
1735 | else if (substitute != NULL((void*)0) && (s = sigma_find(substitute, net->sigma)) == -1) { |
1736 | s = sigma_add(substitute, net->sigma); |
1737 | } |
1738 | for (i=0, fsm = net->states; (fsm+i)->state_no != -1; i++) { |
1739 | if ((fsm+i)->in == o) { |
1740 | (fsm+i)->in = s; |
1741 | } |
1742 | if ((fsm+i)->out == o) { |
1743 | (fsm+i)->out = s; |
1744 | } |
1745 | } |
1746 | net->sigma = sigma_remove(original, net->sigma); |
1747 | sigma_sort(net); |
1748 | fsm_update_flags(net, NO0, NO0, NO0, NO0, NO0, NO0); |
1749 | sigma_cleanup(net,0); |
1750 | /* if s = epsilon */ |
1751 | net->is_minimized = NO0; |
1752 | return(fsm_determinize(net)); |
1753 | } |
1754 | |
1755 | struct fsm *fsm_cross_product(struct fsm *net1, struct fsm *net2) { |
1756 | int i, a, b, current_state, current_start, current_final, target_number, symbol1, symbol2, epsilon = 0, unknown = 0; |
1757 | struct fsm_state *machine_a, *machine_b, *fsm; |
1758 | struct state_arr *point_a, *point_b; |
1759 | struct triplethash *th; |
1760 | |
1761 | /* Perform a cross product by running two machines in parallel */ |
1762 | /* The approach here allows a state to stay, creating a a:0 or 0:b transition */ |
1763 | /* with the a/b-state waiting, and the arc going to {a,stay} or {stay,b} */ |
1764 | /* the wait maneuver is only possible if the waiting state is final */ |
1765 | |
1766 | /* For the rewrite rules compilation, a different cross-product is used: */ |
1767 | /* rewrite_cp() synchronizes A and B as long as possible to get a unique */ |
1768 | /* output match for each cross product. */ |
1769 | |
1770 | /* This behavior where we postpone zeroes on either side and perform */ |
1771 | /* and equal length cross-product as long as possible and never intermix */ |
1772 | /* ?:0 and 0:? arcs (i.e. we keep both machines synchronized as long as possible */ |
1773 | /* can be done by [A .x. B] & ?:?* [?:0*|0:?*] at the cost of possibly */ |
1774 | /* up to three times larger transducers. */ |
1775 | /* This is very similar to the idea in "tristate composition" in fsm_compose() */ |
1776 | |
1777 | /* This function is only used for explicit cross products */ |
1778 | /* such as a:b or A.x.B, etc. In rewrite rules, we use rewrite_cp() */ |
1779 | |
1780 | net1 = fsm_minimize(net1); |
1781 | net2 = fsm_minimize(net2); |
1782 | |
1783 | fsm_merge_sigma(net1, net2); |
1784 | |
1785 | fsm_count(net1); |
1786 | fsm_count(net2); |
1787 | |
1788 | machine_a = net1->states; |
1789 | machine_b = net2->states; |
1790 | |
1791 | /* new state 0 = {0,0} */ |
1792 | |
1793 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
1794 | |
1795 | th = triplet_hash_init(); |
1796 | triplet_hash_insert(th, 0, 0, 0); |
1797 | |
1798 | fsm_state_init(sigma_max(net1->sigma)); |
1799 | |
1800 | point_a = init_state_pointers(machine_a); |
1801 | point_b = init_state_pointers(machine_b); |
1802 | |
1803 | while (!int_stack_isempty()) { |
1804 | |
1805 | /* Get a pair of states to examine */ |
1806 | |
1807 | a = int_stack_pop(); |
1808 | b = int_stack_pop(); |
1809 | |
1810 | /* printf("Treating pair: {%i,%i}\n",a,b); */ |
1811 | |
1812 | current_state = triplet_hash_find(th, a, b, 0); |
1813 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1)) ? 1 : 0; |
1814 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
1815 | |
1816 | fsm_state_set_current_state(current_state, current_final, current_start); |
1817 | |
1818 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
1819 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
1820 | |
1821 | if ((machine_a->target == -1) && (machine_b->target == -1)) { |
1822 | continue; |
1823 | } |
1824 | if ((machine_a->target == -1) && (machine_a->final_state == 0)) { |
1825 | continue; |
1826 | } |
1827 | if ((machine_b->target == -1) && (machine_b->final_state == 0)) { |
1828 | continue; |
1829 | } |
1830 | /* Main check */ |
1831 | if (!((machine_a->target == -1) || (machine_b->target == -1))) { |
1832 | if ((target_number = triplet_hash_find(th, machine_a->target, machine_b->target, 0)) == -1) { |
1833 | STACK_2_PUSH(machine_b->target, machine_a->target)int_stack_push(machine_b->target); int_stack_push(machine_a ->target);; |
1834 | target_number = triplet_hash_insert(th, machine_a->target, machine_b->target, 0); |
1835 | } |
1836 | symbol1 = machine_a->in; |
1837 | symbol2 = machine_b->in; |
1838 | if (symbol1 == IDENTITY2 && symbol2 != IDENTITY2) |
1839 | symbol1 = UNKNOWN1; |
1840 | if (symbol2 == IDENTITY2 && symbol1 != IDENTITY2) |
1841 | symbol2 = UNKNOWN1; |
1842 | |
1843 | fsm_state_add_arc(current_state, symbol1, symbol2, target_number, current_final, current_start); |
1844 | /* @:@ -> @:@ and also ?:? */ |
1845 | if ((machine_a->in == IDENTITY2) && (machine_b->in == IDENTITY2)) { |
1846 | fsm_state_add_arc(current_state, UNKNOWN1, UNKNOWN1, target_number, current_final, current_start); |
1847 | } |
1848 | } |
1849 | if (machine_a->final_state == 1 && machine_b->target != -1) { |
1850 | |
1851 | /* Add 0:b i.e. stay in state A */ |
1852 | if ((target_number = triplet_hash_find(th, machine_a->state_no, machine_b->target, 0)) == -1) { |
1853 | STACK_2_PUSH(machine_b->target, machine_a->state_no)int_stack_push(machine_b->target); int_stack_push(machine_a ->state_no);; |
1854 | target_number = triplet_hash_insert(th, machine_a->state_no, machine_b->target, 0); |
1855 | } |
1856 | /* @:0 becomes ?:0 */ |
1857 | symbol2 = machine_b->in == IDENTITY2 ? UNKNOWN1 : machine_b->in; |
1858 | fsm_state_add_arc(current_state, EPSILON0, symbol2, target_number, current_final, current_start); |
1859 | } |
1860 | |
1861 | if (machine_b->final_state == 1 && machine_a->target != -1) { |
1862 | |
1863 | /* Add a:0 i.e. stay in state B */ |
1864 | if ((target_number = triplet_hash_find(th, machine_a->target, machine_b->state_no, 0)) == -1) { |
1865 | STACK_2_PUSH(machine_b->state_no, machine_a->target)int_stack_push(machine_b->state_no); int_stack_push(machine_a ->target);; |
1866 | target_number = triplet_hash_insert(th, machine_a->target, machine_b->state_no, 0); |
1867 | } |
1868 | /* @:0 becomes ?:0 */ |
1869 | symbol1 = machine_a->in == IDENTITY2 ? UNKNOWN1 : machine_a->in; |
1870 | fsm_state_add_arc(current_state, symbol1, EPSILON0, target_number, current_final, current_start); |
1871 | } |
1872 | } |
1873 | } |
1874 | /* Check arctrack */ |
1875 | fsm_state_end_state(); |
1876 | } |
1877 | |
1878 | free(net1->states); |
1879 | fsm_state_close(net1); |
1880 | |
1881 | for (i=0, fsm = net1->states; (fsm+i)->state_no != -1; i++) { |
1882 | if (((fsm+i)->in == EPSILON0) || ((fsm+i)->out == EPSILON0)) |
1883 | epsilon = 1; |
1884 | if (((fsm+i)->in == UNKNOWN1) || ((fsm+i)->out == UNKNOWN1)) |
1885 | unknown = 1; |
1886 | } |
1887 | if (epsilon == 1) { |
1888 | if (sigma_find_number(EPSILON0, net1->sigma) == -1) { |
1889 | sigma_add_special(EPSILON0, net1->sigma); |
1890 | } |
1891 | } |
1892 | if (unknown == 1) { |
1893 | if (sigma_find_number(UNKNOWN1, net1->sigma) == -1) { |
1894 | sigma_add_special(UNKNOWN1, net1->sigma); |
1895 | } |
1896 | } |
1897 | free(point_a); |
1898 | free(point_b); |
1899 | fsm_destroy(net2); |
1900 | triplet_hash_free(th); |
1901 | return(fsm_coaccessible(net1)); |
1902 | } |
1903 | |
1904 | struct fsm *fsm_precedes(struct fsm *net1, struct fsm *net2) { |
1905 | return(fsm_complement(fsm_minimize(fsm_contains(fsm_minimize(fsm_concat(fsm_minimize(fsm_copy(net2)),fsm_concat(fsm_universal(),fsm_minimize(fsm_copy(net1))))))))); |
1906 | } |
1907 | |
1908 | struct fsm *fsm_follows(struct fsm *net1, struct fsm *net2) { |
1909 | return(fsm_complement(fsm_minimize(fsm_contains(fsm_minimize(fsm_concat(fsm_minimize(fsm_copy(net1)),fsm_concat(fsm_universal(),fsm_minimize(fsm_copy(net2))))))))); |
1910 | } |
1911 | |
1912 | struct fsm *fsm_unflatten(struct fsm *net, char *epsilon_sym, char *repeat_sym) { |
1913 | int a, b, current_state, current_start, current_final, target_number, epsilon, repeat, in, out; |
1914 | struct fsm_state *even_state, *odd_state; |
1915 | struct state_arr *point_a; |
1916 | struct triplethash *th; |
1917 | |
1918 | fsm_minimize(net); |
1919 | fsm_count(net); |
1920 | |
1921 | epsilon = sigma_find(epsilon_sym, net->sigma); |
1922 | repeat = sigma_find(repeat_sym, net->sigma); |
1923 | |
1924 | even_state = net->states; |
1925 | |
1926 | /* new state 0 = {0,0} */ |
1927 | |
1928 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
1929 | |
1930 | th = triplet_hash_init(); |
1931 | triplet_hash_insert(th, 0, 0, 0); |
1932 | |
1933 | fsm_state_init(sigma_max(net->sigma)); |
1934 | |
1935 | point_a = init_state_pointers(even_state); |
1936 | |
1937 | while (!int_stack_isempty()) { |
1938 | |
1939 | /* Get a pair of states to examine */ |
1940 | |
1941 | a = int_stack_pop(); |
1942 | a = int_stack_pop(); |
1943 | |
1944 | /* printf("Treating pair: {%i,%i}\n",a,b); */ |
1945 | |
1946 | current_state = triplet_hash_find(th, a, a, 0); |
1947 | current_start = ((point_a+a)->start == 1) ? 1 : 0; |
1948 | current_final = ((point_a+a)->final == 1) ? 1 : 0; |
1949 | |
1950 | fsm_state_set_current_state(current_state, current_final, current_start); |
1951 | |
1952 | for (even_state = (point_a+a)->transitions; even_state->state_no == a; even_state++) { |
1953 | if (even_state->target == -1) { |
1954 | continue; |
1955 | } |
1956 | in = even_state->in; |
Value stored to 'in' is never read | |
1957 | b = even_state->target; |
1958 | for (odd_state = (point_a+b)->transitions; odd_state->state_no == b; odd_state++) { |
1959 | if (odd_state->target == -1) { |
1960 | continue; |
1961 | } |
1962 | if ((target_number = triplet_hash_find(th, odd_state->target, odd_state->target, 0)) == -1) { |
1963 | STACK_2_PUSH(odd_state->target, odd_state->target)int_stack_push(odd_state->target); int_stack_push(odd_state ->target);; |
1964 | target_number = triplet_hash_insert(th, odd_state->target, odd_state->target, 0); |
1965 | } |
1966 | in = even_state->in; |
1967 | out = odd_state->in; |
1968 | if (out == repeat) { |
1969 | out = in; |
1970 | } else if (in == IDENTITY2 || out == IDENTITY2) { |
1971 | in = in == IDENTITY2 ? UNKNOWN1 : in; |
1972 | out = out == IDENTITY2 ? UNKNOWN1 : out; |
1973 | } |
1974 | if (in == epsilon) { |
1975 | in = EPSILON0; |
1976 | } |
1977 | if (out == epsilon) { |
1978 | out = EPSILON0; |
1979 | } |
1980 | fsm_state_add_arc(current_state, in, out, target_number, current_final, current_start); |
1981 | } |
1982 | } |
1983 | fsm_state_end_state(); |
1984 | } |
1985 | free(net->states); |
1986 | fsm_state_close(net); |
1987 | free(point_a); |
1988 | triplet_hash_free(th); |
1989 | return(net); |
1990 | } |
1991 | |
1992 | |
1993 | struct fsm *fsm_shuffle(struct fsm *net1, struct fsm *net2) { |
1994 | int a, b, current_state, current_start, current_final, target_number; |
1995 | struct fsm_state *machine_a, *machine_b; |
1996 | struct state_arr *point_a, *point_b; |
1997 | struct triplethash *th; |
1998 | |
1999 | /* Shuffle A and B by making alternatively A move and B stay at each or */ |
2000 | /* vice versa at each step */ |
2001 | |
2002 | fsm_minimize(net1); |
2003 | fsm_minimize(net2); |
2004 | |
2005 | fsm_merge_sigma(net1, net2); |
2006 | |
2007 | fsm_count(net1); |
2008 | fsm_count(net2); |
2009 | |
2010 | machine_a = net1->states; |
2011 | machine_b = net2->states; |
2012 | |
2013 | /* new state 0 = {0,0} */ |
2014 | |
2015 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
2016 | |
2017 | th = triplet_hash_init(); |
2018 | triplet_hash_insert(th, 0, 0, 0); |
2019 | |
2020 | fsm_state_init(sigma_max(net1->sigma)); |
2021 | |
2022 | point_a = init_state_pointers(machine_a); |
2023 | point_b = init_state_pointers(machine_b); |
2024 | |
2025 | while (!int_stack_isempty()) { |
2026 | |
2027 | /* Get a pair of states to examine */ |
2028 | |
2029 | a = int_stack_pop(); |
2030 | b = int_stack_pop(); |
2031 | |
2032 | /* printf("Treating pair: {%i,%i}\n",a,b); */ |
2033 | |
2034 | current_state = triplet_hash_find(th, a, b, 0); |
2035 | current_start = (((point_a+a)->start == 1) && ((point_b+b)->start == 1)) ? 1 : 0; |
2036 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 1)) ? 1 : 0; |
2037 | |
2038 | fsm_state_set_current_state(current_state, current_final, current_start); |
2039 | |
2040 | /* Follow A, B stays */ |
2041 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
2042 | if (machine_a->target == -1) { |
2043 | continue; |
2044 | } |
2045 | if ((target_number = triplet_hash_find(th, machine_a->target, b, 0)) == -1) { |
2046 | STACK_2_PUSH(b, machine_a->target)int_stack_push(b); int_stack_push(machine_a->target);; |
2047 | target_number = triplet_hash_insert(th, machine_a->target, b, 0); |
2048 | } |
2049 | |
2050 | fsm_state_add_arc(current_state, machine_a->in, machine_a->out, target_number, current_final, current_start); |
2051 | } |
2052 | |
2053 | /* Follow B, A stays */ |
2054 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
2055 | |
2056 | if (machine_b->target == -1) { |
2057 | continue; |
2058 | } |
2059 | |
2060 | if ((target_number = triplet_hash_find(th, a, machine_b->target, 0)) == -1) { |
2061 | STACK_2_PUSH(machine_b->target, a)int_stack_push(machine_b->target); int_stack_push(a);; |
2062 | target_number = triplet_hash_insert(th, a, machine_b->target, 0); |
2063 | } |
2064 | fsm_state_add_arc(current_state, machine_b->in, machine_b->out, target_number, current_final, current_start); |
2065 | } |
2066 | |
2067 | /* Check arctrack */ |
2068 | fsm_state_end_state(); |
2069 | } |
2070 | |
2071 | free(net1->states); |
2072 | fsm_state_close(net1); |
2073 | free(point_a); |
2074 | free(point_b); |
2075 | fsm_destroy(net2); |
2076 | triplet_hash_free(th); |
2077 | return(net1); |
2078 | } |
2079 | |
2080 | int fsm_equivalent(struct fsm *net1, struct fsm *net2) { |
2081 | /* Test path equivalence of two FSMs by traversing both in parallel */ |
2082 | int a, b, matching_arc, equivalent; |
2083 | struct fsm_state *machine_a, *machine_b; |
2084 | struct state_arr *point_a, *point_b; |
2085 | struct triplethash *th; |
2086 | |
2087 | fsm_merge_sigma(net1, net2); |
2088 | |
2089 | fsm_count(net1); |
2090 | fsm_count(net2); |
2091 | |
2092 | machine_a = net1->states; |
2093 | machine_b = net2->states; |
2094 | |
2095 | equivalent = 0; |
2096 | /* new state 0 = {0,0} */ |
2097 | STACK_2_PUSH(0,0)int_stack_push(0); int_stack_push(0);; |
2098 | |
2099 | th = triplet_hash_init(); |
2100 | triplet_hash_insert(th, 0, 0, 0); |
2101 | |
2102 | point_a = init_state_pointers(machine_a); |
2103 | point_b = init_state_pointers(machine_b); |
2104 | |
2105 | while (!int_stack_isempty()) { |
2106 | |
2107 | /* Get a pair of states to examine */ |
2108 | |
2109 | a = int_stack_pop(); |
2110 | b = int_stack_pop(); |
2111 | |
2112 | if ((point_a+a)->final != (point_b+b)->final) { |
2113 | goto not_equivalent; |
2114 | } |
2115 | /* Check that all arcs in A have matching arc in B, push new state pair on stack */ |
2116 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
2117 | if (machine_a->target == -1) { |
2118 | break; |
2119 | } |
2120 | matching_arc = 0; |
2121 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
2122 | if (machine_b->target == -1) { |
2123 | break; |
2124 | } |
2125 | if (machine_a->in == machine_b->in && machine_a->out == machine_b->out) { |
2126 | matching_arc = 1; |
2127 | if ((triplet_hash_find(th, machine_a->target, machine_b->target, 0)) == -1) { |
2128 | STACK_2_PUSH(machine_b->target, machine_a->target)int_stack_push(machine_b->target); int_stack_push(machine_a ->target);; |
2129 | triplet_hash_insert(th, machine_a->target, machine_b->target, 0); |
2130 | } |
2131 | break; |
2132 | } |
2133 | } |
2134 | if (matching_arc == 0) { |
2135 | goto not_equivalent; |
2136 | } |
2137 | } |
2138 | for (machine_b = (point_b+b)->transitions; machine_b->state_no == b ; machine_b++) { |
2139 | if (machine_b->target == -1) { |
2140 | break; |
2141 | } |
2142 | matching_arc = 0; |
2143 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
2144 | if (machine_a->in == machine_b->in && machine_a->out == machine_b->out) { |
2145 | matching_arc = 1; |
2146 | break; |
2147 | } |
2148 | } |
2149 | if (matching_arc == 0) { |
2150 | goto not_equivalent; |
2151 | } |
2152 | } |
2153 | } |
2154 | equivalent = 1; |
2155 | not_equivalent: |
2156 | fsm_destroy(net1); |
2157 | fsm_destroy(net2); |
2158 | free(point_a); |
2159 | free(point_b); |
2160 | triplet_hash_free(th); |
2161 | return(equivalent); |
2162 | } |
2163 | |
2164 | |
2165 | struct fsm *fsm_minus(struct fsm *net1, struct fsm *net2) { |
2166 | int a, b, current_state, current_start, current_final, target_number, b_has_trans, btarget, statecount; |
2167 | struct fsm_state *machine_a, *machine_b; |
2168 | struct state_arr *point_a, *point_b; |
2169 | struct triplethash *th; |
2170 | statecount = 0; |
2171 | |
2172 | net1 = fsm_minimize(net1); |
2173 | net2 = fsm_minimize(net2); |
2174 | |
2175 | fsm_merge_sigma(net1, net2); |
2176 | |
2177 | fsm_count(net1); |
2178 | fsm_count(net2); |
2179 | |
2180 | machine_a = net1->states; |
2181 | machine_b = net2->states; |
2182 | |
2183 | /* new state 0 = {1,1} */ |
2184 | |
2185 | int_stack_clear(); |
2186 | STACK_2_PUSH(1,1)int_stack_push(1); int_stack_push(1);; |
2187 | |
2188 | th = triplet_hash_init(); |
2189 | triplet_hash_insert(th, 1, 1, 0); |
2190 | |
2191 | point_a = init_state_pointers(machine_a); |
2192 | point_b = init_state_pointers(machine_b); |
2193 | |
2194 | fsm_state_init(sigma_max(net1->sigma)); |
2195 | |
2196 | while (!int_stack_isempty()) { |
2197 | statecount++; |
2198 | /* Get a pair of states to examine */ |
2199 | |
2200 | a = int_stack_pop(); |
2201 | b = int_stack_pop(); |
2202 | |
2203 | current_state = triplet_hash_find(th, a, b, 0); |
2204 | a--; |
2205 | b--; |
2206 | |
2207 | if (b == -1) { |
2208 | current_start = 0; |
2209 | current_final = (point_a+a)->final; |
2210 | } else { |
2211 | current_start = (a == 0 && b == 0) ? 1 : 0; |
2212 | current_final = (((point_a+a)->final == 1) && ((point_b+b)->final == 0)) ? 1 : 0; |
2213 | } |
2214 | |
2215 | fsm_state_set_current_state(current_state, current_final, current_start); |
2216 | |
2217 | for (machine_a = (point_a+a)->transitions ; machine_a->state_no == a ; machine_a++) { |
2218 | if (machine_a->target == -1) { |
2219 | break; |
2220 | continue; |
2221 | } |
2222 | if (b == -1) { |
2223 | /* b is dead */ |
2224 | if ((target_number = triplet_hash_find(th, (machine_a->target)+1, 0, 0)) == -1) { |
2225 | STACK_2_PUSH(0, (machine_a->target)+1)int_stack_push(0); int_stack_push((machine_a->target)+1);; |
2226 | target_number = triplet_hash_insert(th, (machine_a->target)+1, 0, 0); |
2227 | } |
2228 | } else { |
2229 | /* b is alive */ |
2230 | b_has_trans = 0; |
2231 | for (machine_b = (point_b+b)->transitions ; machine_b->state_no == b ; machine_b++) { |
2232 | if (machine_a->in == machine_b->in && machine_a->out == machine_b->out) { |
2233 | b_has_trans = 1; |
2234 | btarget = machine_b->target; |
2235 | break; |
2236 | } |
2237 | } |
2238 | if (b_has_trans) { |
2239 | if ((target_number = triplet_hash_find(th, (machine_a->target)+1, btarget+1, 0)) == -1) { |
2240 | STACK_2_PUSH(btarget+1, (machine_a->target)+1)int_stack_push(btarget+1); int_stack_push((machine_a->target )+1);; |
2241 | target_number = triplet_hash_insert(th, (machine_a->target)+1, (machine_b->target)+1, 0); |
2242 | } |
2243 | } else { |
2244 | /* b is dead */ |
2245 | if ((target_number = triplet_hash_find(th, (machine_a->target)+1, 0, 0)) == -1) { |
2246 | STACK_2_PUSH(0, (machine_a->target)+1)int_stack_push(0); int_stack_push((machine_a->target)+1);; |
2247 | target_number = triplet_hash_insert(th, (machine_a->target)+1, 0, 0); |
2248 | } |
2249 | } |
2250 | } |
2251 | fsm_state_add_arc(current_state, machine_a->in, machine_a->out, target_number, current_final, current_start); |
2252 | } |
2253 | fsm_state_end_state(); |
2254 | } |
2255 | |
2256 | free(net1->states); |
2257 | fsm_state_close(net1); |
2258 | free(point_a); |
2259 | free(point_b); |
2260 | fsm_destroy(net2); |
2261 | triplet_hash_free(th); |
2262 | return(fsm_minimize(net1)); |
2263 | } |
2264 | |
2265 | struct fsm *fsm_contains(struct fsm *net) { |
2266 | /* [?* A ?*] */ |
2267 | struct fsm *net2; |
2268 | |
2269 | net2 = fsm_concat(fsm_concat(fsm_universal(),net),fsm_universal()); |
2270 | return(net2); |
2271 | } |
2272 | |
2273 | struct fsm *fsm_universal() { |
2274 | struct fsm *net; |
2275 | int s; |
2276 | net = fsm_create(""); |
2277 | fsm_update_flags(net, YES1, YES1, YES1, YES1, NO0, NO0); |
2278 | net->states = malloc(sizeof(struct fsm_state)*2); |
2279 | s = sigma_add_special(IDENTITY2,net->sigma); |
2280 | add_fsm_arc(net->states, 0, 0, s, s, 0, 1, 1); |
2281 | add_fsm_arc(net->states, 1, -1, -1, -1, -1, -1, -1); |
2282 | net->arccount = 1; |
2283 | net->statecount = 1; |
2284 | net->linecount = 2; |
2285 | net->finalcount = 1; |
2286 | net->pathcount = PATHCOUNT_CYCLIC-1; |
2287 | return(net); |
2288 | } |
2289 | |
2290 | struct fsm *fsm_contains_one(struct fsm *net) { |
2291 | /* $A - $[[?+ A ?* & A ?*] | [A ?+ & A]] */ |
2292 | struct fsm *ret; |
2293 | ret = fsm_minus(fsm_contains(fsm_copy(net)),fsm_contains(fsm_union(fsm_intersect(fsm_concat(fsm_kleene_plus(fsm_identity()),fsm_concat(fsm_copy(net),fsm_universal())) , fsm_concat(fsm_copy(net),fsm_universal())),fsm_intersect(fsm_concat(fsm_copy(net),fsm_kleene_plus(fsm_identity())), fsm_copy(net))))); |
2294 | fsm_destroy(net); |
2295 | return(ret); |
2296 | } |
2297 | |
2298 | struct fsm *fsm_contains_opt_one(struct fsm *net) { |
2299 | /* $.A | ~$A */ |
2300 | struct fsm *ret; |
2301 | ret = fsm_union(fsm_contains_one(fsm_copy(net)),fsm_complement(fsm_contains(fsm_copy(net)))); |
2302 | fsm_destroy(net); |
2303 | return(ret); |
2304 | } |
2305 | |
2306 | struct fsm *fsm_simple_replace(struct fsm *net1, struct fsm *net2) { |
2307 | /* [~[?* [A-0] ?*] [A.x.B]]* ~[?* [A-0] ?*] */ |
2308 | |
2309 | struct fsm *UPlus, *ret; |
2310 | UPlus = fsm_minimize(fsm_kleene_plus(fsm_identity())); |
2311 | ret = fsm_concat(fsm_minimize(fsm_kleene_star(fsm_minimize(fsm_concat(fsm_complement(fsm_minimize(fsm_concat(fsm_concat(fsm_universal(),fsm_minimize(fsm_intersect(fsm_copy(net1),fsm_copy(UPlus)))),fsm_universal()))),fsm_minimize(fsm_cross_product(fsm_copy(net1),fsm_copy(net2))))))),fsm_minimize(fsm_complement(fsm_minimize(fsm_concat(fsm_concat(fsm_universal(), fsm_intersect(fsm_copy(net1),fsm_copy(UPlus))),fsm_universal()))))); |
2312 | fsm_destroy(net1); |
2313 | fsm_destroy(net2); |
2314 | fsm_destroy(UPlus); |
2315 | return(ret); |
2316 | } |
2317 | |
2318 | struct fsm *fsm_priority_union_upper(struct fsm *net1, struct fsm *net2) { |
2319 | /* A .P. B = A | [~[A.u] .o. B] */ |
2320 | struct fsm *ret; |
2321 | ret = fsm_union(fsm_copy(net1),fsm_compose(fsm_complement(fsm_upper(fsm_copy(net1))),net2)); |
2322 | fsm_destroy(net1); |
2323 | return(ret); |
2324 | } |
2325 | |
2326 | struct fsm *fsm_priority_union_lower(struct fsm *net1, struct fsm *net2) { |
2327 | /* A .p. B = A | B .o. ~[A.l] */ |
2328 | struct fsm *ret; |
2329 | ret = fsm_union(fsm_copy(net1),fsm_compose(net2,fsm_complement(fsm_lower(fsm_copy(net1))))); |
2330 | fsm_destroy(net1); |
2331 | return(ret); |
2332 | } |
2333 | |
2334 | struct fsm *fsm_lenient_compose(struct fsm *net1, struct fsm *net2) { |
2335 | /* A .O. B = [A .o. B] .P. B */ |
2336 | struct fsm *ret; |
2337 | ret = fsm_priority_union_upper(fsm_compose(fsm_copy(net1),net2),fsm_copy(net1)); |
2338 | fsm_destroy(net1); |
2339 | return(ret); |
2340 | } |
2341 | |
2342 | struct fsm *fsm_term_negation(struct fsm *net1) { |
2343 | return(fsm_intersect(fsm_identity(),fsm_complement(net1))); |
2344 | } |
2345 | |
2346 | struct fsm *fsm_quotient_interleave(struct fsm *net1, struct fsm *net2) { |
2347 | /* A/\/B = The set of strings you can interleave in B and get a string from A */ |
2348 | /* [B/[x \x* x] & A/x .o. [[[\x]:0]* (x:0 \x* x:0)]*].l */ |
2349 | struct fsm *Result; |
2350 | Result = fsm_lower(fsm_compose(fsm_intersect(fsm_ignore(net2,fsm_concat(fsm_symbol("@>@"),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol("@>@"))),fsm_symbol("@>@"))),OP_IGNORE_ALL1),fsm_ignore(net1,fsm_symbol("@>@"),OP_IGNORE_ALL1)),fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_cross_product(fsm_term_negation(fsm_symbol("@>@")),fsm_empty_string())),fsm_optionality(fsm_concat(fsm_cross_product(fsm_symbol("@>@"),fsm_empty_string()),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol("@>@"))),fsm_cross_product(fsm_symbol("@>@"),fsm_empty_string())))))))); |
2351 | |
2352 | Result->sigma = sigma_remove("@>@",Result->sigma); |
2353 | /* Could clean up sigma */ |
2354 | return(Result); |
2355 | } |
2356 | |
2357 | struct fsm *fsm_quotient_left(struct fsm *net1, struct fsm *net2) { |
2358 | /* A\\\B = [B .o. A:0 ?*].l; */ |
2359 | /* A\\\B = the set of suffixes you can add to A to get a string in B */ |
2360 | struct fsm *Result; |
2361 | Result = fsm_lower(fsm_compose(net2,fsm_concat(fsm_cross_product(net1,fsm_empty_string()),fsm_universal()))); |
2362 | return(Result); |
2363 | } |
2364 | |
2365 | struct fsm *fsm_quotient_right(struct fsm *net1, struct fsm *net2) { |
2366 | struct fsm *Result; |
2367 | |
2368 | /* A///B = [A .o. ?* B:0].l; */ |
2369 | /* A///B = the set of prefixes you can add to B to get strings in A */ |
2370 | Result = fsm_lower(fsm_compose(net1, fsm_concat(fsm_universal(),fsm_cross_product(net2,fsm_empty_string())))); |
2371 | return(Result); |
2372 | } |
2373 | |
2374 | struct fsm *fsm_ignore(struct fsm *net1, struct fsm *net2, int operation) { |
2375 | struct fsm_state *fsm1, *fsm2, *new_fsm; |
2376 | struct fsm *Result; |
2377 | short *handled_states1, *handled_states2; |
2378 | int i, j, k, state_add_counter = 0, malloc_size, splices = 0, returns, target, splice_size, start_splice, states1, states2, lines1, lines2, *return_state; |
2379 | |
2380 | net1 = fsm_minimize(net1); |
2381 | net2 = fsm_minimize(net2); |
2382 | |
2383 | if (fsm_isempty(net2)) { |
2384 | fsm_destroy(net2); |
2385 | return(net1); |
2386 | } |
2387 | fsm_merge_sigma(net1, net2); |
2388 | |
2389 | fsm_count(net1); |
2390 | fsm_count(net2); |
2391 | |
2392 | states1 = net1->statecount; |
2393 | states2 = net2->statecount; |
2394 | lines1 = net1->linecount; |
2395 | lines2 = net2->linecount; |
2396 | fsm1 = net1->states; |
2397 | fsm2 = net2->states; |
2398 | |
2399 | if (operation == OP_IGNORE_INTERNAL2) { |
2400 | Result = fsm_lower(fsm_compose(fsm_ignore(fsm_copy(net1),fsm_symbol("@i<@"),OP_IGNORE_ALL1),fsm_compose(fsm_complement(fsm_union(fsm_concat(fsm_symbol("@i<@"),fsm_universal()),fsm_concat(fsm_universal(),fsm_symbol("@i<@")))),fsm_simple_replace(fsm_symbol("@i<@"),fsm_copy(net2))))); |
2401 | Result->sigma = sigma_remove("@i<@",Result->sigma); |
2402 | fsm_destroy(net1); |
2403 | fsm_destroy(net2); |
2404 | return(Result); |
2405 | } |
2406 | |
2407 | malloc_size = lines1 + (states1 * (lines2 + net2->finalcount + 1)); |
2408 | new_fsm = malloc(sizeof(struct fsm_state)*(malloc_size+1)); |
2409 | |
2410 | /* Mark if a state has been handled with ignore */ |
2411 | handled_states1 = malloc(sizeof(short)*states1); |
2412 | handled_states2 = malloc(sizeof(short)*states2); |
2413 | |
2414 | /* Mark which ignores return to which state */ |
2415 | return_state = malloc(sizeof(int)*states1); |
2416 | splice_size = states2; |
2417 | start_splice = states1; |
2418 | for (k=0; k<states1; k++) |
2419 | *(handled_states1+k) = 0; |
2420 | |
2421 | for (i=0, j=0; (fsm1+i)->state_no != -1; i++) { |
2422 | if (*(handled_states1+(fsm1+i)->state_no) == 0) { |
2423 | target = start_splice + splices * splice_size; |
2424 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, EPSILON0, EPSILON0, target, (fsm1+i)->final_state, (fsm1+i)->start_state); |
2425 | *(return_state+splices) = (fsm1+i)->state_no; |
2426 | *(handled_states1+(fsm1+i)->state_no) = 1; |
2427 | j++; |
2428 | splices++; |
2429 | if ((fsm1+i)->in != -1) { |
2430 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, (fsm1+i)->in, (fsm1+i)->out, (fsm1+i)->target, (fsm1+i)->final_state, (fsm1+i)->start_state); |
2431 | j++; |
2432 | } |
2433 | } else { |
2434 | add_fsm_arc(new_fsm, j, (fsm1+i)->state_no, (fsm1+i)->in, (fsm1+i)->out, (fsm1+i)->target, (fsm1+i)->final_state, (fsm1+i)->start_state); |
2435 | j++; |
2436 | } |
2437 | } |
2438 | |
2439 | /* Add a sequence of fsm2s at the end, with arcs back to the appropriate states */ |
2440 | |
2441 | state_add_counter = start_splice; |
2442 | |
2443 | for (returns = 0; splices>0; splices--, returns++) { |
2444 | /* Zero handled return arc states */ |
2445 | |
2446 | for (k=0; k<states2; k++) |
2447 | *(handled_states2+k) = 0; |
2448 | |
2449 | for (i=0; (fsm2+i)->state_no != -1; i++) { |
2450 | if ((fsm2+i)->final_state == 1 && *(handled_states2+(fsm2+i)->state_no) == 0) { |
2451 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no + state_add_counter, EPSILON0, EPSILON0, *(return_state+returns), 0, 0); |
2452 | j++; |
2453 | *(handled_states2+(fsm2+i)->state_no) = 1; |
2454 | if ((fsm2+i)->target != -1) { |
2455 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no + state_add_counter, (fsm2+i)->in, (fsm2+i)->out , (fsm2+i)->target + state_add_counter, 0, 0); |
2456 | j++; |
2457 | } |
2458 | } else { |
2459 | add_fsm_arc(new_fsm, j, (fsm2+i)->state_no + state_add_counter, (fsm2+i)->in, (fsm2+i)->out, (fsm2+i)->target + state_add_counter, 0, 0); |
2460 | j++; |
2461 | } |
2462 | } |
2463 | state_add_counter = state_add_counter + states2; |
2464 | } |
2465 | |
2466 | add_fsm_arc(new_fsm, j, -1, -1, -1, -1, -1, -1); |
2467 | free(handled_states1); |
2468 | free(handled_states2); |
2469 | free(return_state); |
2470 | free(net1->states); |
2471 | fsm_destroy(net2); |
2472 | net1->states = new_fsm; |
2473 | fsm_update_flags(net1, NO0, NO0, NO0, NO0, NO0, NO0); |
2474 | fsm_count(net1); |
2475 | return(net1); |
2476 | } |
2477 | |
2478 | /* Remove those symbols from sigma that have the same distribution as IDENTITY */ |
2479 | |
2480 | void fsm_compact(struct fsm *net) { |
2481 | struct checktable { |
2482 | int state_no; |
2483 | int target; |
2484 | } *checktable; |
2485 | |
2486 | struct fsm_state *fsm; |
2487 | struct sigma *sig, *sigprev, *sign; |
2488 | _Bool *potential; |
2489 | int i, j, prevstate, numsymbols, in, out, state, target, removable; |
2490 | |
2491 | fsm = net->states; |
2492 | numsymbols = sigma_max(net->sigma); |
2493 | |
2494 | potential = malloc(sizeof(_Bool)*(numsymbols+1)); |
2495 | checktable = malloc(sizeof(struct checktable)*(numsymbols+1)); |
2496 | |
2497 | for (i=0; i <= numsymbols; i++) { |
2498 | *(potential+i) = 1; |
2499 | (checktable+i)->state_no = -1; |
2500 | (checktable+i)->target = -1; |
2501 | } |
2502 | /* For consistency reasons, can't remove symbols longer than 1 */ |
2503 | /* since @ and ? only match utf8 symbols of length 1 */ |
2504 | |
2505 | for (sig = net->sigma; sig != NULL((void*)0) && sig->number != -1; sig = sig->next) { |
2506 | if (utf8strlen(sig->symbol) > 1) { |
2507 | *(potential+sig->number) = 0; |
2508 | } |
2509 | } |
2510 | |
2511 | prevstate = 0; |
2512 | |
2513 | for (i=0; ; i++) { |
2514 | |
2515 | if ((fsm+i)->state_no != prevstate) { |
2516 | for (j=3; j<=numsymbols;j++) { |
2517 | if ((checktable+j)->state_no != prevstate && (checktable+IDENTITY2)->state_no != prevstate) { |
2518 | continue; |
2519 | } |
2520 | if ((checktable+j)->target == (checktable+IDENTITY2)->target && (checktable+j)->state_no == (checktable+IDENTITY2)->state_no) { |
2521 | continue; |
2522 | } |
2523 | *(potential+j) = 0; |
2524 | } |
2525 | } |
2526 | |
2527 | if ((fsm+i)->state_no == -1) |
2528 | break; |
2529 | |
2530 | in = (fsm+i)->in; |
2531 | out = (fsm+i)->out; |
2532 | state = (fsm+i)->state_no; |
2533 | target = (fsm+i)->target; |
2534 | |
2535 | if (in != -1 && out != -1) { |
2536 | if (((in == out && in > 2) || in == IDENTITY2)) { |
2537 | (checktable+in)->state_no = state; |
2538 | (checktable+in)->target = target; |
2539 | } |
2540 | if (in != out && in > 2) { |
2541 | *(potential+in) = 0; |
2542 | } |
2543 | if (in != out && out > 2) { |
2544 | *(potential+out) = 0; |
2545 | } |
2546 | } |
2547 | prevstate = state; |
2548 | } |
2549 | for (removable = 0, i=3; i <= numsymbols; i++) { |
2550 | if (*(potential+i) == 1) { |
2551 | removable = 1; |
2552 | } |
2553 | |
2554 | } |
2555 | if (removable == 0) { |
2556 | free(potential); |
2557 | free(checktable); |
2558 | return; |
2559 | } |
2560 | i = j = 0; |
2561 | do { |
2562 | in = (fsm+i)->in; |
2563 | |
2564 | add_fsm_arc(fsm, j ,(fsm+i)->state_no,(fsm+i)->in,(fsm+i)->out,(fsm+i)->target,(fsm+i)->final_state,(fsm+i)->start_state); |
2565 | if (in == -1) { |
2566 | i++; |
2567 | j++; |
2568 | } |
2569 | else if (*(potential+in) == 1 && in > 2) { |
2570 | i++; |
2571 | } else { |
2572 | i++; |
2573 | j++; |
2574 | } |
2575 | } while ((fsm+i)->state_no != -1); |
2576 | add_fsm_arc(fsm, j ,(fsm+i)->state_no,(fsm+i)->in,(fsm+i)->out,(fsm+i)->target,(fsm+i)->final_state,(fsm+i)->start_state); |
2577 | |
2578 | sigprev = NULL((void*)0); |
2579 | for (sig = net->sigma; sig != NULL((void*)0) && sig->number != -1; sig = sign) { |
2580 | |
2581 | if ((sig->number > 2) && (*(potential+sig->number) == 1)) { |
2582 | sigprev->next = sig->next; |
2583 | sign = sig->next; |
2584 | free(sig->symbol); |
2585 | free(sig); |
2586 | } else { |
2587 | sigprev = sig; |
2588 | sign = sig->next; |
2589 | } |
2590 | } |
2591 | free(potential); |
2592 | free(checktable); |
2593 | sigma_cleanup(net,0); |
2594 | } |
2595 | |
2596 | int fsm_symbol_occurs(struct fsm *net, char *symbol, int side) { |
2597 | struct fsm_state *fsm; |
2598 | int i, sym; |
2599 | sym = sigma_find(symbol, net->sigma); |
2600 | if (sym == -1) { |
2601 | return 0; |
2602 | } |
2603 | for (i=0, fsm = net->states; (fsm+i)->state_no != -1; i++) { |
2604 | if (side == M_UPPER1 && (fsm+i)->in == sym) |
2605 | return 1; |
2606 | if (side == M_LOWER2 && (fsm+i)->out == sym) |
2607 | return 1; |
2608 | if (side == (M_UPPER1 + M_LOWER2) && ( (fsm+i)->in == sym || (fsm+i)->out == sym)) |
2609 | return 1; |
2610 | } |
2611 | return 0; |
2612 | } |
2613 | |
2614 | struct fsm *fsm_equal_substrings(struct fsm *net, struct fsm *left, struct fsm *right) { |
2615 | |
2616 | /* The algorithm extracts from the lower side all and only those strings where */ |
2617 | /* every X occurring in different substrings ... left X right ... is identical. */ |
2618 | |
2619 | /* Caveat: there is no reliable termination condition for the loop that extracts */ |
2620 | /* identities. This means that if run on languages where there are potentially */ |
2621 | /* infinite-length identical delimited substrings, it will not terminate. */ |
2622 | |
2623 | /* For example: _eq(l a* r l a* r, l , r) will not terminate. */ |
2624 | |
2625 | /* However, even if the languages occuring between left and right are infinite */ |
2626 | /* the algorithm terminates eventually if the the possible combinations of */ |
2627 | /* identical substrings is finite in length. */ |
2628 | |
2629 | /* For example _eq([l a* b r l a b* r]*, l, r) does terminate even though */ |
2630 | /* it contains a potentially infinite number of delimited substrings since */ |
2631 | /* the maximum length of the possible identical delimited substrings is finite. */ |
2632 | |
2633 | /* In this case the above example evaluates to the language [l a b r l a b r]* */ |
2634 | |
2635 | /* The algorithm: */ |
2636 | /* Input: L, left, right */ |
2637 | /* Output: the language that preserves only those strings in L */ |
2638 | /* where X is the same for all left X right sequences */ |
2639 | |
2640 | /* 1. mark all instances of left with ... LB and right with RB ... in L */ |
2641 | |
2642 | /* 2. split L into Leq and Lbypass */ |
2643 | /* where Lbypass are all those strings where LB RB sequences aren't */ |
2644 | /* properly nested (we must have ... LB ... RB ... LB ... RB ... etc.) */ |
2645 | /* Lbypass also includes all those with less than two bracketed */ |
2646 | /* instances, since we don't need to check equality if there's only */ |
2647 | /* one bracketed substring. */ |
2648 | /* We also remove the auxiliary LB and RB symbols from Lbypass */ |
2649 | |
2650 | /* 3. We extract all the possible symbols occurring between LB and RB */ |
2651 | /* from Leq */ |
2652 | |
2653 | /* 4. We create the transducer Move from all symbols in (3) */ |
2654 | /* Move = M(sym_1) | ... | M(sym_n) */ |
2655 | /* where M(a) is defined as [\LB* LB:a a:LB]* \LB* */ |
2656 | /* i.e. it rewrites bracketed strings such as "LB a b RB LB a b RB" */ |
2657 | /* to "a LB b RB a LB b RB" in effect moving brackets to the right */ |
2658 | /* one step for a symbol. */ |
2659 | |
2660 | /* 5. Leq = Cleanup(Leq) */ |
2661 | /* Cleanup removes LB RB sequences and, at the same time filters out */ |
2662 | /* any strings where we find both LB RB and LB X RB where X is not 0. */ |
2663 | /* since we know such sequences could not possibly be identical */ |
2664 | /* Cleanup is implemented by composing Leq with */ |
2665 | /* \LB* [LB:0 RB:0 \LB*]* | ~$[LB RB] */ |
2666 | /* - if the symbol LB does not occur on the lower side of Leq, goto(6) */ |
2667 | /* - else Leq = Move(Leq), goto(5) */ |
2668 | |
2669 | /* 6. Result = L .o. [Leq | Lbypass] */ |
2670 | |
2671 | int syms; |
2672 | struct sigma *sig; |
2673 | struct fsm *LB, *RB, *NOLB, *NORB, *InsertBrackets, *RemoveBrackets, *Lbracketed, *NOBR, *BracketFilter, *Lbypass, *Leq, *Labels, *Cleanup, *ThisMove, *ThisSymbol, *Move, *Result, *oldnet; |
2674 | |
2675 | oldnet = fsm_copy(net); |
2676 | |
2677 | /* LB = "@<eq<@" */ |
2678 | /* RB = "@>eq>@" */ |
2679 | |
2680 | LB = fsm_symbol("@<eq<@"); |
2681 | NOLB = fsm_minimize(fsm_term_negation(fsm_copy(LB))); |
2682 | RB = fsm_symbol("@>eq>@"); |
2683 | NORB = fsm_minimize(fsm_term_negation(fsm_copy(RB))); |
2684 | /* NOBR = ~$[LB|RB] */ |
2685 | NOBR = fsm_minimize(fsm_complement(fsm_contains(fsm_union(fsm_copy(LB),fsm_copy(RB))))); |
2686 | |
2687 | sigma_add("@<eq<@", net->sigma); |
2688 | sigma_add("@>eq>@", net->sigma); |
2689 | sigma_sort(net); |
2690 | |
2691 | /* Insert our aux markers into the language */ |
2692 | |
2693 | /* InsertBrackets = [~$[L|R] [L 0:LB|0:RB R]]* ~$[L|R]; */ |
2694 | |
2695 | InsertBrackets = fsm_minimize(fsm_concat(fsm_kleene_star(fsm_concat(fsm_complement(fsm_contains(fsm_union(fsm_copy(left),fsm_copy(right)))),fsm_union(fsm_concat(fsm_copy(left),fsm_cross_product(fsm_empty_string(),fsm_copy(LB))),fsm_concat(fsm_cross_product(fsm_empty_string(),fsm_copy(RB)),fsm_copy(right))))),fsm_complement(fsm_contains(fsm_union(fsm_copy(left),fsm_copy(right)))))); |
2696 | |
2697 | |
2698 | /* Lbracketed = L .o. InsertBrackets */ |
2699 | |
2700 | Lbracketed = fsm_compose(fsm_copy(net), InsertBrackets); |
2701 | |
2702 | /* Filter out improper nestings, or languages with less than two marker pairs */ |
2703 | |
2704 | /* BracketFilter = NOBR LB NOBR RB NOBR [LB NOBR RB NOBR]+ */ |
2705 | |
2706 | BracketFilter = fsm_concat(fsm_copy(NOBR),fsm_concat(fsm_copy(LB),fsm_concat(fsm_copy(NOBR),fsm_concat(fsm_copy(RB),fsm_concat(fsm_copy(NOBR),fsm_kleene_plus(fsm_concat(fsm_copy(LB),fsm_concat(fsm_copy(NOBR),fsm_concat(fsm_copy(RB),fsm_copy(NOBR)))))))))); |
2707 | |
2708 | /* RemoveBrackets = [LB:0|RB:0|NOBR]* */ |
2709 | /* Lbypass = [Lbracketed .o. ~BracketFilter .o. LB|RB -> 0] */ |
2710 | /* Leq = [Lbracketed .o. BracketFilter] */ |
2711 | |
2712 | RemoveBrackets = fsm_kleene_star(fsm_union(fsm_cross_product(fsm_copy(LB),fsm_empty_string()),fsm_union(fsm_cross_product(fsm_copy(RB),fsm_empty_string()),fsm_copy(NOBR)))); |
2713 | |
2714 | |
2715 | Lbypass = fsm_lower(fsm_compose(fsm_copy(Lbracketed),fsm_compose(fsm_complement(fsm_copy(BracketFilter)),RemoveBrackets))); |
2716 | Leq = fsm_compose(Lbracketed, BracketFilter); |
2717 | |
2718 | /* Extract labels from lower side of L */ |
2719 | /* [Leq .o. [\LB:0* LB:0 \RB* RB:0]* \LB:0*].l */ |
2720 | |
2721 | Labels = fsm_sigma_pairs_net(fsm_lower(fsm_compose(fsm_copy(Leq),fsm_concat(fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_cross_product(fsm_copy(NOLB),fsm_empty_string())),fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_empty_string()),fsm_concat(fsm_kleene_star(fsm_copy(NORB)),fsm_cross_product(fsm_copy(RB),fsm_empty_string()))))),fsm_kleene_star(fsm_cross_product(fsm_copy(NOLB),fsm_empty_string())))))); |
2722 | |
2723 | /* Cleanup = \LB* [LB:0 RB:0 \LB*]* | ~$[LB RB] */ |
2724 | |
2725 | Cleanup = fsm_minimize(fsm_union(fsm_concat(fsm_kleene_star(fsm_copy(NOLB)),fsm_kleene_star(fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_empty_string()),fsm_concat(fsm_cross_product(fsm_copy(RB),fsm_empty_string()),fsm_kleene_star(fsm_copy(NOLB)))))),fsm_complement(fsm_contains(fsm_concat(fsm_copy(LB),fsm_copy(RB)))))); |
2726 | |
2727 | /* Construct the move function */ |
2728 | |
2729 | Move = fsm_empty_string(); |
2730 | |
2731 | syms = 0; |
2732 | for (sig = Labels->sigma; sig != NULL((void*)0); sig = sig->next) { |
2733 | /* Unclear which is faster: the first or the second version */ |
2734 | /* ThisMove = [\LB* LB:X X:LB]* \LB* */ |
2735 | /* ThisMove = [\LB* LB:0 X 0:LB]* \LB* */ |
2736 | if (sig->number >= 3) { |
2737 | ThisSymbol = fsm_symbol(sig->symbol); |
2738 | //ThisMove = fsm_concat(fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_copy(NOLB)),fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_copy(ThisSymbol)),fsm_cross_product(fsm_copy(ThisSymbol),fsm_copy(LB))))), fsm_kleene_star(fsm_copy(NOLB))); |
2739 | ThisMove = fsm_concat(fsm_kleene_star(fsm_concat(fsm_kleene_star(fsm_copy(NOLB)),fsm_concat(fsm_cross_product(fsm_copy(LB),fsm_empty_string()), fsm_concat(fsm_copy(ThisSymbol), fsm_cross_product(fsm_empty_string(),fsm_copy(LB)))))), fsm_kleene_star(fsm_copy(NOLB))); |
2740 | |
2741 | Move = fsm_union(Move, ThisMove); |
2742 | syms++; |
2743 | } |
2744 | } |
2745 | Move = fsm_minimize(Move); |
2746 | if (syms == 0) { |
2747 | //printf("no syms"); |
2748 | fsm_destroy(net); |
2749 | return(oldnet); |
2750 | } |
2751 | |
2752 | /* Move until no bracket symbols remain */ |
2753 | for (;;) { |
2754 | //printf("Zapping\n"); |
2755 | Leq = fsm_compose(Leq, fsm_copy(Cleanup)); |
2756 | if (!fsm_symbol_occurs(Leq, "@<eq<@", M_LOWER2)) |
2757 | break; |
2758 | Leq = fsm_compose(Leq, fsm_copy(Move)); |
2759 | //Leq = fsm_minimize(fsm_compose(Leq, fsm_copy(Move))); |
2760 | // printf("size: %i\n",Leq->statecount); |
2761 | } |
2762 | |
2763 | /* Result = L .o. [Leq | Lbypass] */ |
2764 | Result = fsm_minimize(fsm_compose(net, fsm_union(fsm_lower(Leq), Lbypass))); |
2765 | sigma_remove("@<eq<@", Result->sigma); |
2766 | sigma_remove("@>eq>@", Result->sigma); |
2767 | fsm_compact(Result); |
2768 | sigma_sort(Result); |
2769 | fsm_destroy(oldnet); |
2770 | return(Result); |
2771 | } |
2772 | |
2773 | struct fsm *fsm_invert(struct fsm *net) { |
2774 | struct fsm_state *fsm; |
2775 | int i, temp; |
2776 | |
2777 | fsm = net->states; |
2778 | for (i = 0; (fsm+i)->state_no != -1; i++) { |
2779 | temp = (fsm+i)->in; |
2780 | (fsm+i)->in = (fsm+i)->out; |
2781 | (fsm+i)->out = temp; |
2782 | } |
2783 | i = net->arcs_sorted_in; |
2784 | net->arcs_sorted_in = net->arcs_sorted_out; |
2785 | net->arcs_sorted_out = i; |
2786 | return (net); |
2787 | } |
2788 | |
2789 | struct fsm *fsm_sequentialize(struct fsm *net) { |
2790 | printf("Implementation pending\n"); |
2791 | return(net); |
2792 | } |
2793 | |
2794 | |
2795 | struct fsm *fsm_bimachine(struct fsm *net) { |
2796 | printf("implementation pending\n"); |
2797 | return(net); |
2798 | } |
2799 | |
2800 | /* _leftrewr(L, a:b) does a -> b || .#. L _ */ |
2801 | /* _leftrewr(?* L, a:b) does a -> b || L _ */ |
2802 | /* works only with single symbols, but is fast */ |
2803 | |
2804 | struct fsm *fsm_left_rewr(struct fsm *net, struct fsm *rewr) { |
2805 | struct fsm_construct_handle *outh; |
2806 | struct fsm_read_handle *inh; |
2807 | struct fsm *newnet; |
2808 | int i, maxsigma, *sigmatable, currstate, sinkstate, seensource, innum, outnum, relabelin, relabelout, addedsink; |
2809 | |
2810 | fsm_merge_sigma(net, rewr); |
2811 | relabelin = rewr->states->in; |
2812 | relabelout = rewr->states->out; |
2813 | |
2814 | inh = fsm_read_init(net); |
2815 | sinkstate = fsm_get_num_states(inh); |
2816 | outh = fsm_construct_init(net->name); |
2817 | fsm_construct_copy_sigma(outh, net->sigma); |
2818 | maxsigma = sigma_max(net->sigma); |
2819 | maxsigma++; |
2820 | sigmatable = malloc(maxsigma * sizeof(int)); |
2821 | for (i = 0; i < maxsigma; i++) { |
2822 | *(sigmatable+i) = -1; |
2823 | } |
2824 | addedsink = 0; |
2825 | while ((currstate = fsm_get_next_state(inh)) != -1) { |
2826 | seensource = 0; |
2827 | fsm_construct_set_final(outh, currstate); |
2828 | |
2829 | while (fsm_get_next_state_arc(inh)) { |
2830 | innum = fsm_get_arc_num_in(inh); |
2831 | outnum = fsm_get_arc_num_out(inh); |
2832 | *(sigmatable+innum) = currstate; |
2833 | if (innum == relabelin) { |
2834 | seensource = 1; |
2835 | if (fsm_read_is_final(inh, currstate)) { |
2836 | outnum = relabelout; |
2837 | } |
2838 | } |
2839 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), innum, outnum); |
2840 | } |
2841 | for (i = 2; i < maxsigma; i++) { |
2842 | if (*(sigmatable+i) != currstate && i != relabelin) { |
2843 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, i, i); |
2844 | addedsink = 1; |
2845 | } |
2846 | } |
2847 | if (seensource == 0) { |
2848 | addedsink = 1; |
2849 | if (fsm_read_is_final(inh, currstate)) { |
2850 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, relabelin, relabelout); |
2851 | } else { |
2852 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, relabelin, relabelin); |
2853 | } |
2854 | } |
2855 | } |
2856 | if (addedsink) { |
2857 | for (i = 2; i < maxsigma; i++) { |
2858 | fsm_construct_add_arc_nums(outh, sinkstate, sinkstate, i, i); |
2859 | } |
2860 | fsm_construct_set_final(outh, sinkstate); |
2861 | } |
2862 | fsm_construct_set_initial(outh, 0); |
2863 | fsm_read_done(inh); |
2864 | newnet = fsm_construct_done(outh); |
2865 | free(sigmatable); |
2866 | fsm_destroy(net); |
2867 | fsm_destroy(rewr); |
2868 | return(newnet); |
2869 | } |
2870 | |
2871 | struct fsm *fsm_add_sink(struct fsm *net, int final) { |
2872 | struct fsm_construct_handle *outh; |
2873 | struct fsm_read_handle *inh; |
2874 | struct fsm *newnet; |
2875 | int i, maxsigma, *sigmatable, currstate, sinkstate; |
2876 | |
2877 | inh = fsm_read_init(net); |
2878 | sinkstate = fsm_get_num_states(inh); |
2879 | outh = fsm_construct_init(net->name); |
2880 | fsm_construct_copy_sigma(outh, net->sigma); |
2881 | maxsigma = sigma_max(net->sigma); |
2882 | maxsigma++; |
2883 | sigmatable = malloc(maxsigma * sizeof(int)); |
2884 | for (i = 0; i < maxsigma; i++) { |
2885 | *(sigmatable+i) = -1; |
2886 | } |
2887 | while ((currstate = fsm_get_next_state(inh)) != -1) { |
2888 | while (fsm_get_next_state_arc(inh)) { |
2889 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
2890 | *(sigmatable+fsm_get_arc_num_in(inh)) = currstate; |
2891 | } |
2892 | for (i = 2; i < maxsigma; i++) { |
2893 | if (*(sigmatable+i) != currstate) { |
2894 | fsm_construct_add_arc_nums(outh, currstate, sinkstate, i, i); |
2895 | } |
2896 | } |
2897 | } |
2898 | for (i = 2; i < maxsigma; i++) { |
2899 | fsm_construct_add_arc_nums(outh, sinkstate, sinkstate, i, i); |
2900 | } |
2901 | |
2902 | while ((i = fsm_get_next_final(inh)) != -1) { |
2903 | fsm_construct_set_final(outh, i); |
2904 | } |
2905 | if (final == 1) { |
2906 | fsm_construct_set_final(outh, sinkstate); |
2907 | } |
2908 | fsm_construct_set_initial(outh, 0); |
2909 | fsm_read_done(inh); |
2910 | newnet = fsm_construct_done(outh); |
2911 | fsm_destroy(net); |
2912 | return(newnet); |
2913 | } |
2914 | |
2915 | /* _addfinalloop(L, "#":0) adds "#":0 at all final states */ |
2916 | /* _addnonfinalloop(L, "#":0) adds "#":0 at all nonfinal states */ |
2917 | /* _addloop(L, "#":0) adds "#":0 at all states */ |
2918 | |
2919 | /* Adds loops at finals = 0 nonfinals, finals = 1 finals, finals = 2, all */ |
2920 | |
2921 | struct fsm *fsm_add_loop(struct fsm *net, struct fsm *marker, int finals) { |
2922 | struct fsm *newnet; |
2923 | struct fsm_construct_handle *outh; |
2924 | struct fsm_read_handle *inh, *minh; |
2925 | int i; |
2926 | |
2927 | inh = fsm_read_init(net); |
2928 | minh = fsm_read_init(marker); |
2929 | |
2930 | outh = fsm_construct_init(net->name); |
2931 | fsm_construct_copy_sigma(outh, net->sigma); |
2932 | |
2933 | while (fsm_get_next_arc(inh)) { |
2934 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
2935 | } |
2936 | /* Where to put the loops */ |
2937 | if (finals == 1) { |
2938 | while ((i = fsm_get_next_final(inh)) != -1) { |
2939 | fsm_construct_set_final(outh, i); |
2940 | fsm_read_reset(minh); |
2941 | while (fsm_get_next_arc(minh)) { |
2942 | fsm_construct_add_arc(outh, i, i, fsm_get_arc_in(minh), fsm_get_arc_out(minh)); |
2943 | } |
2944 | } |
2945 | } else if (finals == 0 || finals == 2) { |
2946 | for (i=0; i < net->statecount; i++) { |
2947 | if (finals == 2 || !fsm_read_is_final(inh, i)) { |
2948 | fsm_read_reset(minh); |
2949 | while (fsm_get_next_arc(minh)) { |
2950 | fsm_construct_add_arc(outh, i, i, fsm_get_arc_in(minh), fsm_get_arc_out(minh)); |
2951 | } |
2952 | } |
2953 | } |
2954 | } |
2955 | while ((i = fsm_get_next_final(inh)) != -1) { |
2956 | fsm_construct_set_final(outh, i); |
2957 | } |
2958 | fsm_construct_set_initial(outh, 0); |
2959 | fsm_read_done(inh); |
2960 | fsm_read_done(minh); |
2961 | newnet = fsm_construct_done(outh); |
2962 | fsm_destroy(net); |
2963 | return(newnet); |
2964 | } |
2965 | |
2966 | /* _marktail(?* L, 0:x) does ~$x .o. [..] -> x || L _ ; */ |
2967 | /* _marktail(?* R.r, 0:x).r does ~$x .o. [..] -> x || _ R */ |
2968 | |
2969 | struct fsm *fsm_mark_fsm_tail(struct fsm *net, struct fsm *marker) { |
2970 | struct fsm *newnet; |
2971 | struct fsm_construct_handle *outh; |
2972 | struct fsm_read_handle *inh, *minh; |
2973 | int i, *mappings, maxstate, target, newtarget; |
2974 | |
2975 | inh = fsm_read_init(net); |
2976 | minh = fsm_read_init(marker); |
2977 | |
2978 | outh = fsm_construct_init(net->name); |
2979 | fsm_construct_copy_sigma(outh, net->sigma); |
2980 | |
2981 | mappings = calloc(net->statecount, sizeof(int)); |
2982 | maxstate = net->statecount; |
2983 | |
2984 | while (fsm_get_next_arc(inh)) { |
2985 | target = fsm_get_arc_target(inh); |
2986 | if (fsm_read_is_final(inh, target)) { |
2987 | if (!*(mappings+target)) { |
2988 | newtarget = maxstate; |
2989 | *(mappings+target) = newtarget; |
2990 | fsm_read_reset(minh); |
2991 | while (fsm_get_next_arc(minh)) { |
2992 | fsm_construct_add_arc(outh, newtarget, target, fsm_get_arc_in(minh), fsm_get_arc_out(minh)); |
2993 | } |
2994 | maxstate++; |
2995 | } else { |
2996 | newtarget = *(mappings+target); |
2997 | } |
2998 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), newtarget, fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
2999 | } else { |
3000 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), target, fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
3001 | } |
3002 | } |
3003 | for (i=0; i < net->statecount; i++) { |
3004 | fsm_construct_set_final(outh,i); |
3005 | } |
3006 | |
3007 | fsm_construct_set_initial(outh, 0); |
3008 | fsm_read_done(inh); |
3009 | fsm_read_done(minh); |
3010 | newnet = fsm_construct_done(outh); |
3011 | fsm_destroy(net); |
3012 | free(mappings); |
3013 | return(newnet); |
3014 | } |
3015 | |
3016 | struct fsm *fsm_context_restrict(struct fsm *X, struct fsmcontexts *LR) { |
3017 | |
3018 | struct fsm *Var, *Notvar, *UnionL, *UnionP, *Result, *Word; |
3019 | struct fsmcontexts *pairs; |
3020 | |
3021 | /* [.#. \.#.* .#.]-`[[ [\X* X C X \X*]&~[\X* [L1 X \X* X R1|...|Ln X \X* X Rn] \X*]],X,0] */ |
3022 | /* Where X = variable symbol */ |
3023 | /* The above only works if we do the subtraction iff the right hand side contains .#. in */ |
3024 | /* its alphabet */ |
3025 | /* A more generic formula is the following: */ |
3026 | |
3027 | /* `[[[(?) \.#.* (?)] - `[[[\X* X C X \X*] - [\X* [L1 X \X* X R1|...|Ln X \X* X Rn] \X*] ],X,0],.#.,0]; */ |
3028 | /* Here, the LHS is another way of saying ~[?+ .#. ?+] */ |
3029 | |
3030 | Var = fsm_symbol("@VARX@"); |
3031 | Notvar = fsm_minimize(fsm_kleene_star(fsm_term_negation(fsm_symbol("@VARX@")))); |
3032 | |
3033 | /* We add the variable symbol to all alphabets to avoid ? mathing it */ |
3034 | /* which would cause extra nondeterminism */ |
3035 | sigma_add("@VARX@", X->sigma); |
3036 | sigma_sort(X); |
3037 | |
3038 | /* Also, if any L or R is undeclared we add 0 */ |
3039 | for (pairs = LR; pairs != NULL((void*)0); pairs = pairs->next) { |
3040 | if (pairs->left == NULL((void*)0)) { |
3041 | pairs->left = fsm_empty_string(); |
3042 | } else { |
3043 | sigma_add("@VARX@",pairs->left->sigma); |
3044 | sigma_substitute(".#.", "@#@", pairs->left->sigma); |
3045 | sigma_sort(pairs->left); |
3046 | } |
3047 | if (pairs->right == NULL((void*)0)) { |
3048 | pairs->right = fsm_empty_string(); |
3049 | } else { |
3050 | sigma_add("@VARX@",pairs->right->sigma); |
3051 | sigma_substitute(".#.", "@#@", pairs->right->sigma); |
3052 | sigma_sort(pairs->right); |
3053 | } |
3054 | } |
3055 | |
3056 | UnionP = fsm_empty_set(); |
3057 | |
3058 | for (pairs = LR; pairs != NULL((void*)0) ; pairs = pairs->next) { |
3059 | UnionP = fsm_minimize(fsm_union(fsm_minimize(fsm_concat(fsm_copy(pairs->left),fsm_concat(fsm_copy(Var),fsm_concat(fsm_copy(Notvar),fsm_concat(fsm_copy(Var),fsm_copy(pairs->right)))))), UnionP)); |
3060 | } |
3061 | |
3062 | UnionL = fsm_minimize(fsm_concat(fsm_copy(Notvar),fsm_concat(fsm_copy(Var), fsm_concat(fsm_copy(X), fsm_concat(fsm_copy(Var),fsm_copy(Notvar)))))); |
3063 | |
3064 | Result = fsm_intersect(UnionL, fsm_complement(fsm_concat(fsm_copy(Notvar),fsm_minimize(fsm_concat(fsm_copy(UnionP),fsm_copy(Notvar)))))); |
3065 | if (sigma_find("@VARX@", Result->sigma) != -1) { |
3066 | Result = fsm_complement(fsm_substitute_symbol(Result, "@VARX@","@_EPSILON_SYMBOL_@")); |
3067 | } else { |
3068 | Result = fsm_complement(Result); |
3069 | } |
3070 | |
3071 | if (sigma_find("@#@", Result->sigma) != -1) { |
3072 | Word = fsm_minimize(fsm_concat(fsm_symbol("@#@"),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol("@#@"))),fsm_symbol("@#@")))); |
3073 | Result = fsm_intersect(Word, Result); |
3074 | Result = fsm_substitute_symbol(Result, "@#@", "@_EPSILON_SYMBOL_@"); |
3075 | } |
3076 | fsm_destroy(UnionP); |
3077 | fsm_destroy(Var); |
3078 | fsm_destroy(Notvar); |
3079 | fsm_destroy(X); |
3080 | fsm_clear_contexts(pairs); |
3081 | return(Result); |
3082 | } |
3083 | |
3084 | struct fsm *fsm_flatten(struct fsm *net, struct fsm *epsilon) { |
3085 | struct fsm *newnet; |
3086 | struct fsm_construct_handle *outh; |
3087 | struct fsm_read_handle *inh, *eps; |
3088 | int i, maxstate, in, out, target; |
3089 | char *epssym, *instring, *outstring; |
3090 | |
3091 | net = fsm_minimize(net); |
3092 | |
3093 | inh = fsm_read_init(net); |
3094 | eps = fsm_read_init(epsilon); |
3095 | if (fsm_get_next_arc(eps) == -1) { |
3096 | fsm_destroy(net); |
3097 | fsm_destroy(epsilon); |
3098 | return NULL((void*)0); |
3099 | } |
3100 | epssym = strdup(fsm_get_arc_in(eps)); |
3101 | fsm_read_done(eps); |
3102 | |
3103 | outh = fsm_construct_init(net->name); |
3104 | maxstate = net->statecount; |
3105 | |
3106 | fsm_construct_copy_sigma(outh, net->sigma); |
3107 | |
3108 | while (fsm_get_next_arc(inh)) { |
3109 | target = fsm_get_arc_target(inh); |
3110 | in = fsm_get_arc_num_in(inh); |
3111 | out = fsm_get_arc_num_out(inh); |
3112 | if (in == EPSILON0 || out == EPSILON0) { |
3113 | instring = fsm_get_arc_in(inh); |
3114 | outstring = fsm_get_arc_out(inh); |
3115 | if (in == EPSILON0) { instring = epssym; } |
3116 | if (out == EPSILON0) { outstring = epssym; } |
3117 | |
3118 | fsm_construct_add_arc(outh, fsm_get_arc_source(inh), maxstate, instring, instring); |
3119 | fsm_construct_add_arc(outh, maxstate, target, outstring, outstring); |
3120 | } else { |
3121 | fsm_construct_add_arc_nums(outh, fsm_get_arc_source(inh), maxstate, in, in); |
3122 | fsm_construct_add_arc_nums(outh, maxstate, target, out, out); |
3123 | } |
3124 | maxstate++; |
3125 | } |
3126 | while ((i = fsm_get_next_final(inh)) != -1) { |
3127 | fsm_construct_set_final(outh, i); |
3128 | } |
3129 | while ((i = fsm_get_next_initial(inh)) != -1) { |
3130 | fsm_construct_set_initial(outh, i); |
3131 | } |
3132 | |
3133 | fsm_read_done(inh); |
3134 | newnet = fsm_construct_done(outh); |
3135 | fsm_destroy(net); |
3136 | fsm_destroy(epsilon); |
3137 | free(epssym); |
3138 | return(newnet); |
3139 | } |
3140 | |
3141 | /* Removes IDENTITY and UNKNOWN transitions. If mode = 1, only removes UNKNOWNs */ |
3142 | struct fsm *fsm_close_sigma(struct fsm *net, int mode) { |
3143 | struct fsm *newnet; |
3144 | struct fsm_construct_handle *newh; |
3145 | struct fsm_read_handle *inh; |
3146 | int i; |
3147 | |
3148 | inh = fsm_read_init(net); |
3149 | newh = fsm_construct_init(net->name); |
3150 | fsm_construct_copy_sigma(newh, net->sigma); |
3151 | |
3152 | while (fsm_get_next_arc(inh)) { |
3153 | if ((fsm_get_arc_num_in(inh) != UNKNOWN1 && fsm_get_arc_num_in(inh) != IDENTITY2 && fsm_get_arc_num_out(inh) != UNKNOWN1 && fsm_get_arc_num_out(inh) != IDENTITY2) || (mode == 1 && fsm_get_arc_num_in(inh) != UNKNOWN1 && fsm_get_arc_num_out(inh) != UNKNOWN1)) |
3154 | fsm_construct_add_arc_nums(newh, fsm_get_arc_source(inh), fsm_get_arc_target(inh), fsm_get_arc_num_in(inh), fsm_get_arc_num_out(inh)); |
3155 | } |
3156 | while ((i = fsm_get_next_final(inh)) != -1) { |
3157 | fsm_construct_set_final(newh, i); |
3158 | } |
3159 | while ((i = fsm_get_next_initial(inh)) != -1) { |
3160 | fsm_construct_set_initial(newh, i); |
3161 | } |
3162 | fsm_read_done(inh); |
3163 | newnet = fsm_construct_done(newh); |
3164 | fsm_destroy(net); |
3165 | return(fsm_minimize(newnet)); |
3166 | } |