File: | apply.c |
Warning: | line 1387, column 23 Access to field 'value' results in a dereference of a null pointer (loaded from variable 'flist') |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Foma: a finite-state toolkit and library. */ | |||
2 | /* Copyright © 2008-2021 Mans Hulden */ | |||
3 | ||||
4 | /* This file is part of foma. */ | |||
5 | ||||
6 | /* Licensed under the Apache License, Version 2.0 (the "License"); */ | |||
7 | /* you may not use this file except in compliance with the License. */ | |||
8 | /* You may obtain a copy of the License at */ | |||
9 | ||||
10 | /* http://www.apache.org/licenses/LICENSE-2.0 */ | |||
11 | ||||
12 | /* Unless required by applicable law or agreed to in writing, software */ | |||
13 | /* distributed under the License is distributed on an "AS IS" BASIS, */ | |||
14 | /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ | |||
15 | /* See the License for the specific language governing permissions and */ | |||
16 | /* limitations under the License. */ | |||
17 | ||||
18 | #include <stdio.h> | |||
19 | #include <stdlib.h> | |||
20 | #include <time.h> | |||
21 | #include <string.h> | |||
22 | #include <limits.h> | |||
23 | #include "foma.h" | |||
24 | ||||
25 | #define RANDOM1 1 | |||
26 | #define ENUMERATE2 2 | |||
27 | #define MATCH4 4 | |||
28 | #define UP8 8 | |||
29 | #define DOWN16 16 | |||
30 | #define LOWER32 32 | |||
31 | #define UPPER64 64 | |||
32 | #define SPACE128 128 | |||
33 | ||||
34 | #define FAIL0 0 | |||
35 | #define SUCCEED1 1 | |||
36 | ||||
37 | #define DEFAULT_OUTSTRING_SIZE4096 4096 | |||
38 | #define DEFAULT_STACK_SIZE128 128 | |||
39 | ||||
40 | #define APPLY_BINSEARCH_THRESHOLD10 10 | |||
41 | ||||
42 | #define BITMASK(b)(1 << ((b) & 7)) (1 << ((b) & 7)) | |||
43 | #define BITSLOT(b)((b) >> 3) ((b) >> 3) | |||
44 | #define BITSET(a,b)((a)[((b) >> 3)] |= (1 << ((b) & 7))) ((a)[BITSLOT(b)((b) >> 3)] |= BITMASK(b)(1 << ((b) & 7))) | |||
45 | #define BITCLEAR(a,b)((a)[((b) >> 3)] &= ~(1 << ((b) & 7))) ((a)[BITSLOT(b)((b) >> 3)] &= ~BITMASK(b)(1 << ((b) & 7))) | |||
46 | #define BITTEST(a,b)((a)[((b) >> 3)] & (1 << ((b) & 7))) ((a)[BITSLOT(b)((b) >> 3)] & BITMASK(b)(1 << ((b) & 7))) | |||
47 | #define BITNSLOTS(nb)((nb + 8 - 1) / 8) ((nb + CHAR_BIT8 - 1) / CHAR_BIT8) | |||
48 | ||||
49 | ||||
50 | ||||
51 | static int apply_append(struct apply_handle *h, int cptr, int sym); | |||
52 | static char *apply_net(struct apply_handle *h); | |||
53 | static void apply_create_statemap(struct apply_handle *h,struct fsm *net); | |||
54 | static void apply_create_sigarray(struct apply_handle *h,struct fsm *net); | |||
55 | static void apply_create_sigmatch(struct apply_handle *h); | |||
56 | int apply_match_length(struct apply_handle *h, int symbol); | |||
57 | static int apply_match_str(struct apply_handle *h,int symbol, int position); | |||
58 | static void apply_add_flag(struct apply_handle *h,char *name); | |||
59 | static int apply_check_flag(struct apply_handle *h,int type, char *name, char *value); | |||
60 | static void apply_clear_flags(struct apply_handle *h); | |||
61 | void apply_set_iptr(struct apply_handle *h); | |||
62 | void apply_mark_flagstates(struct apply_handle *h); | |||
63 | void apply_clear_index(struct apply_handle *h); | |||
64 | ||||
65 | static void apply_stack_clear(struct apply_handle *h); | |||
66 | static int apply_stack_isempty(struct apply_handle *h); | |||
67 | static void apply_stack_pop (struct apply_handle *h); | |||
68 | static void apply_stack_push (struct apply_handle *h, int vmark, char *sflagname, char *sflagvalue, int sflagneg); | |||
69 | static void apply_force_clear_stack(struct apply_handle *h); | |||
70 | ||||
71 | ||||
72 | void apply_set_obey_flags(struct apply_handle *h, int value) { | |||
73 | h->obey_flags = value; | |||
74 | } | |||
75 | ||||
76 | void apply_set_show_flags(struct apply_handle *h, int value) { | |||
77 | h->show_flags = value; | |||
78 | } | |||
79 | ||||
80 | void apply_set_print_space(struct apply_handle *h, int value) { | |||
81 | h->print_space = value; | |||
82 | h->space_symbol = strdup(" "); | |||
83 | } | |||
84 | ||||
85 | void apply_set_separator(struct apply_handle *h, char *symbol) { | |||
86 | h->separator = strdup(symbol); | |||
87 | } | |||
88 | ||||
89 | void apply_set_epsilon(struct apply_handle *h, char *symbol) { | |||
90 | free(h->epsilon_symbol); | |||
91 | h->epsilon_symbol = strdup(symbol); | |||
92 | (h->sigs+EPSILON0)->symbol = h->epsilon_symbol; | |||
93 | (h->sigs+EPSILON0)->length = strlen(h->epsilon_symbol); | |||
94 | } | |||
95 | ||||
96 | void apply_set_space_symbol(struct apply_handle *h, char *space) { | |||
97 | h->space_symbol = strdup(space); | |||
98 | h->print_space = 1; | |||
99 | } | |||
100 | ||||
101 | void apply_set_print_pairs(struct apply_handle *h, int value) { | |||
102 | h->print_pairs = value; | |||
103 | } | |||
104 | ||||
105 | static void apply_force_clear_stack(struct apply_handle *h) { | |||
106 | /* Make sure stack is empty and marks reset */ | |||
107 | if (!apply_stack_isempty(h)) { | |||
108 | *(h->marks+(h->gstates+h->ptr)->state_no) = 0; | |||
109 | while (!apply_stack_isempty(h)) { | |||
110 | apply_stack_pop(h); | |||
111 | *(h->marks+(h->gstates+h->ptr)->state_no) = 0; | |||
112 | } | |||
113 | h->iterator = 0; | |||
114 | h->iterate_old = 0; | |||
115 | apply_stack_clear(h); | |||
116 | } | |||
117 | } | |||
118 | ||||
119 | char *apply_enumerate(struct apply_handle *h) { | |||
120 | ||||
121 | char *result = NULL((void*)0); | |||
122 | ||||
123 | if (h->last_net == NULL((void*)0) || h->last_net->finalcount == 0) { | |||
124 | return (NULL((void*)0)); | |||
125 | } | |||
126 | h->binsearch = 0; | |||
127 | if (h->iterator == 0) { | |||
128 | h->iterate_old = 0; | |||
129 | apply_force_clear_stack(h); | |||
130 | result = apply_net(h); | |||
131 | if ((h->mode & RANDOM1) != RANDOM1) | |||
132 | (h->iterator)++; | |||
133 | } else { | |||
134 | h->iterate_old = 1; | |||
135 | result = apply_net(h); | |||
136 | } | |||
137 | return(result); | |||
138 | } | |||
139 | ||||
140 | char *apply_words(struct apply_handle *h) { | |||
141 | h->mode = DOWN16 + ENUMERATE2 + LOWER32 + UPPER64; | |||
142 | return(apply_enumerate(h)); | |||
143 | } | |||
144 | ||||
145 | char *apply_upper_words(struct apply_handle *h) { | |||
146 | h->mode = DOWN16 + ENUMERATE2 + UPPER64; | |||
147 | return(apply_enumerate(h)); | |||
148 | } | |||
149 | ||||
150 | char *apply_lower_words(struct apply_handle *h) { | |||
151 | h->mode = DOWN16 + ENUMERATE2 + LOWER32; | |||
152 | return(apply_enumerate(h)); | |||
153 | } | |||
154 | ||||
155 | char *apply_random_words(struct apply_handle *h) { | |||
156 | apply_clear_flags(h); | |||
157 | h->mode = DOWN16 + ENUMERATE2 + LOWER32 + UPPER64 + RANDOM1; | |||
158 | return(apply_enumerate(h)); | |||
159 | } | |||
160 | ||||
161 | char *apply_random_lower(struct apply_handle *h) { | |||
162 | apply_clear_flags(h); | |||
163 | h->mode = DOWN16 + ENUMERATE2 + LOWER32 + RANDOM1; | |||
164 | return(apply_enumerate(h)); | |||
165 | } | |||
166 | ||||
167 | char *apply_random_upper(struct apply_handle *h) { | |||
168 | apply_clear_flags(h); | |||
169 | h->mode = DOWN16 + ENUMERATE2 + UPPER64 + RANDOM1; | |||
170 | return(apply_enumerate(h)); | |||
171 | } | |||
172 | ||||
173 | /* Frees memory associated with applies */ | |||
174 | void apply_clear(struct apply_handle *h) { | |||
175 | struct sigma_trie_arrays *sta, *stap; | |||
176 | for (sta = h->sigma_trie_arrays; sta != NULL((void*)0); ) { | |||
177 | stap = sta; | |||
178 | free(sta->arr); | |||
179 | sta = sta->next; | |||
180 | free(stap); | |||
181 | } | |||
182 | h->sigma_trie_arrays = NULL((void*)0); | |||
183 | if (h->statemap != NULL((void*)0)) { | |||
184 | free(h->statemap); | |||
185 | h->statemap = NULL((void*)0); | |||
186 | } | |||
187 | if (h->numlines != NULL((void*)0)) { | |||
188 | free(h->numlines); | |||
189 | h->numlines = NULL((void*)0); | |||
190 | } | |||
191 | if (h->marks != NULL((void*)0)) { | |||
192 | free(h->marks); | |||
193 | h->marks = NULL((void*)0); | |||
194 | } | |||
195 | if (h->searchstack != NULL((void*)0)) { | |||
196 | free(h->searchstack); | |||
197 | h->searchstack = NULL((void*)0); | |||
198 | } | |||
199 | if (h->sigs != NULL((void*)0)) { | |||
200 | free(h->sigs); | |||
201 | h->sigs = NULL((void*)0); | |||
202 | } | |||
203 | if (h->flag_lookup != NULL((void*)0)) { | |||
204 | free(h->flag_lookup); | |||
205 | h->flag_lookup = NULL((void*)0); | |||
206 | } | |||
207 | if (h->sigmatch_array != NULL((void*)0)) { | |||
208 | free(h->sigmatch_array); | |||
209 | h->sigmatch_array = NULL((void*)0); | |||
210 | } | |||
211 | if (h->flagstates != NULL((void*)0)) { | |||
212 | free(h->flagstates); | |||
213 | h->flagstates = NULL((void*)0); | |||
214 | } | |||
215 | apply_clear_index(h); | |||
216 | h->last_net = NULL((void*)0); | |||
217 | h->iterator = 0; | |||
218 | free(h->outstring); | |||
219 | free(h->separator); | |||
220 | free(h->epsilon_symbol); | |||
221 | free(h); | |||
222 | } | |||
223 | ||||
224 | char *apply_updown(struct apply_handle *h, char *word) { | |||
225 | ||||
226 | char *result = NULL((void*)0); | |||
227 | ||||
228 | if (h->last_net == NULL((void*)0) || h->last_net->finalcount == 0) | |||
229 | return (NULL((void*)0)); | |||
230 | ||||
231 | if (word == NULL((void*)0)) { | |||
232 | h->iterate_old = 1; | |||
233 | result = apply_net(h); | |||
234 | } | |||
235 | else if (word != NULL((void*)0)) { | |||
236 | h->iterate_old = 0; | |||
237 | h->instring = word; | |||
238 | apply_create_sigmatch(h); | |||
239 | ||||
240 | /* Remove old marks if necessary TODO: only pop marks */ | |||
241 | apply_force_clear_stack(h); | |||
242 | result = apply_net(h); | |||
243 | } | |||
244 | return(result); | |||
245 | } | |||
246 | ||||
247 | char *apply_down(struct apply_handle *h, char *word) { | |||
248 | ||||
249 | h->mode = DOWN16; | |||
250 | if (h->index_in) { | |||
251 | h->indexed = 1; | |||
252 | } else { | |||
253 | h->indexed = 0; | |||
254 | } | |||
255 | h->binsearch = (h->last_net->arcs_sorted_in == 1) ? 1 : 0; | |||
256 | return(apply_updown(h, word)); | |||
257 | } | |||
258 | ||||
259 | char *apply_up(struct apply_handle *h, char *word) { | |||
260 | ||||
261 | h->mode = UP8; | |||
262 | if (h->index_out) { | |||
263 | h->indexed = 1; | |||
264 | } else { | |||
265 | h->indexed = 0; | |||
266 | } | |||
267 | h->binsearch = (h->last_net->arcs_sorted_out == 1) ? 1 : 0; | |||
268 | return(apply_updown(h, word)); | |||
269 | } | |||
270 | ||||
271 | struct apply_handle *apply_init(struct fsm *net) { | |||
272 | struct apply_handle *h; | |||
273 | ||||
274 | srand((unsigned int) time(NULL((void*)0))); | |||
275 | h = calloc(1,sizeof(struct apply_handle)); | |||
276 | /* Init */ | |||
277 | ||||
278 | h->iterate_old = 0; | |||
279 | h->iterator = 0; | |||
280 | h->instring = NULL((void*)0); | |||
281 | h->flag_list = NULL((void*)0); | |||
282 | h->flag_lookup = NULL((void*)0); | |||
283 | h->obey_flags = 1; | |||
284 | h->show_flags = 0; | |||
285 | h->print_space = 0; | |||
286 | h->print_pairs = 0; | |||
287 | h->separator = strdup(":"); | |||
288 | h->epsilon_symbol = strdup("0"); | |||
289 | h->last_net = net; | |||
290 | h->outstring = malloc(sizeof(char)*DEFAULT_OUTSTRING_SIZE4096); | |||
291 | h->outstringtop = DEFAULT_OUTSTRING_SIZE4096; | |||
292 | *(h->outstring) = '\0'; | |||
293 | h->gstates = net->states; | |||
294 | h->gsigma = net->sigma; | |||
295 | h->printcount = 1; | |||
296 | apply_create_statemap(h, net); | |||
297 | h->searchstack = malloc(sizeof(struct searchstack) * DEFAULT_STACK_SIZE128); | |||
298 | h->apply_stack_top = DEFAULT_STACK_SIZE128; | |||
299 | apply_stack_clear(h); | |||
300 | apply_create_sigarray(h, net); | |||
301 | return(h); | |||
302 | } | |||
303 | ||||
304 | int apply_stack_isempty (struct apply_handle *h) { | |||
305 | if (h->apply_stack_ptr == 0) { | |||
306 | return 1; | |||
307 | } | |||
308 | return 0; | |||
309 | } | |||
310 | ||||
311 | void apply_stack_clear (struct apply_handle *h) { | |||
312 | h->apply_stack_ptr = 0; | |||
313 | } | |||
314 | ||||
315 | void apply_stack_pop (struct apply_handle *h) { | |||
316 | struct flag_list *flist; | |||
317 | struct searchstack *ss; | |||
318 | (h->apply_stack_ptr)--; | |||
319 | ss = h->searchstack+h->apply_stack_ptr; | |||
320 | ||||
321 | h->iptr = ss->iptr; | |||
322 | h->ptr = ss->offset; | |||
323 | h->ipos = ss->ipos; | |||
324 | h->opos = ss->opos; | |||
325 | h->state_has_index = ss->state_has_index; | |||
326 | /* Restore mark */ | |||
327 | *(h->marks+(h->gstates+h->ptr)->state_no) = ss->visitmark; | |||
328 | ||||
329 | if (h->has_flags && ss->flagname != NULL((void*)0)) { | |||
330 | /* Restore flag */ | |||
331 | for (flist = h->flag_list; flist != NULL((void*)0); flist = flist->next) { | |||
332 | if (strcmp(flist->name, ss->flagname) == 0) { | |||
333 | break; | |||
334 | } | |||
335 | } | |||
336 | if (flist == NULL((void*)0)) | |||
337 | perror("***Nothing to pop\n"); | |||
338 | flist->value = ss->flagvalue; | |||
339 | flist->neg = ss->flagneg; | |||
340 | } | |||
341 | } | |||
342 | ||||
343 | static void apply_stack_push (struct apply_handle *h, int vmark, char *sflagname, char *sflagvalue, int sflagneg) { | |||
344 | struct searchstack *ss; | |||
345 | if (h->apply_stack_ptr == h->apply_stack_top) { | |||
346 | h->searchstack = realloc(h->searchstack, sizeof(struct searchstack)* ((h->apply_stack_top)*2)); | |||
347 | if (h->searchstack == NULL((void*)0)) { | |||
348 | perror("Apply stack full!!!\n"); | |||
349 | exit(0); | |||
350 | } | |||
351 | h->apply_stack_top *= 2; | |||
352 | } | |||
353 | ss = h->searchstack+h->apply_stack_ptr; | |||
354 | ss->offset = h->curr_ptr; | |||
355 | ss->ipos = h->ipos; | |||
356 | ss->opos = h->opos; | |||
357 | ss->visitmark = vmark; | |||
358 | ss->iptr = h->iptr; | |||
359 | ss->state_has_index = h->state_has_index; | |||
360 | if (h->has_flags) { | |||
361 | ss->flagname = sflagname; | |||
362 | ss->flagvalue = sflagvalue; | |||
363 | ss->flagneg = sflagneg; | |||
364 | } | |||
365 | (h->apply_stack_ptr)++; | |||
366 | } | |||
367 | ||||
368 | void apply_reset_enumerator(struct apply_handle *h) { | |||
369 | int statecount, i; | |||
370 | statecount = h->last_net->statecount; | |||
371 | for (i=0; i < statecount; i++) { | |||
372 | *(h->marks+i) = 0; | |||
373 | } | |||
374 | h->iterator = 0; | |||
375 | h->iterate_old = 0; | |||
376 | } | |||
377 | ||||
378 | void apply_clear_index_list(struct apply_handle *h, struct apply_state_index **index) { | |||
379 | int i, j, statecount; | |||
380 | struct apply_state_index *iptr, *iptr_tmp, *iptr_zero; | |||
381 | if (index == NULL((void*)0)) | |||
382 | return; | |||
383 | statecount = h->last_net->statecount; | |||
384 | for (i = 0; i < statecount; i++) { | |||
385 | iptr = *(index+i); | |||
386 | if (iptr == NULL((void*)0)) { | |||
387 | continue; | |||
388 | } | |||
389 | iptr_zero = *(index+i); | |||
390 | for (j = h->sigma_size - 1 ; j >= 0; j--) { /* Make sure to not free the list in EPSILON */ | |||
391 | iptr = *(index+i) + j; /* as the other states lists' tails point to it */ | |||
392 | for (iptr = iptr->next ; iptr != NULL((void*)0) && iptr != iptr_zero; iptr = iptr_tmp) { | |||
393 | iptr_tmp = iptr->next; | |||
394 | free(iptr); | |||
395 | } | |||
396 | } | |||
397 | free(*(index+i)); | |||
398 | } | |||
399 | } | |||
400 | ||||
401 | void apply_clear_index(struct apply_handle *h) { | |||
402 | if (h->index_in) { | |||
403 | apply_clear_index_list(h, h->index_in); | |||
404 | free(h->index_in); | |||
405 | h->index_in = NULL((void*)0); | |||
406 | } | |||
407 | if (h->index_out) { | |||
408 | apply_clear_index_list(h, h->index_out); | |||
409 | free(h->index_out); | |||
410 | h->index_out = NULL((void*)0); | |||
411 | } | |||
412 | } | |||
413 | ||||
414 | void apply_index(struct apply_handle *h, int inout, int densitycutoff, int mem_limit, int flags_only) { | |||
415 | struct fsm_state *fsm; | |||
416 | unsigned int cnt = 0; | |||
417 | int i, j, maxtrans, numtrans, laststate, sym; | |||
418 | fsm = h->gstates; | |||
419 | ||||
420 | struct apply_state_index **indexptr, *iptr, *tempiptr; | |||
421 | ||||
422 | struct pre_index { | |||
423 | int state_no; | |||
424 | struct pre_index *next; | |||
425 | } *pre_index, *tp, *tpp; | |||
426 | if (flags_only && !h->has_flags) { | |||
427 | return; | |||
428 | } | |||
429 | /* get numtrans */ | |||
430 | for (i=0, laststate = 0, maxtrans = 0, numtrans = 0; (fsm+i)->state_no != -1; i++) { | |||
431 | if ((fsm+i)->state_no != laststate) { | |||
432 | maxtrans = numtrans > maxtrans ? numtrans : maxtrans; | |||
433 | numtrans = 0; | |||
434 | } | |||
435 | if ((fsm+i)->target != -1) { | |||
436 | numtrans++; | |||
437 | } | |||
438 | laststate = (fsm+i)->state_no; | |||
439 | } | |||
440 | ||||
441 | pre_index = calloc(maxtrans+1, sizeof(struct pre_index)); | |||
442 | for (i = 0; i <= maxtrans; i++) { | |||
443 | (pre_index+i)->state_no = -1; | |||
444 | } | |||
445 | ||||
446 | /* We create an array of states, indexed by how many transitions they have */ | |||
447 | /* so that later, we can traverse them in order densest first, in case we */ | |||
448 | /* only want to index to some predefined maximum memory usage. */ | |||
449 | ||||
450 | for (i = 0, laststate = 0, maxtrans = 0, numtrans = 0; (fsm+i)->state_no != -1; i++) { | |||
451 | if ((fsm+i)->state_no != laststate) { | |||
452 | if ((pre_index+numtrans)->state_no == -1) { | |||
453 | (pre_index+numtrans)->state_no = laststate; | |||
454 | } else { | |||
455 | tp = calloc(1, sizeof(struct pre_index)); | |||
456 | tp->state_no = laststate; | |||
457 | tp->next = (pre_index+numtrans)->next; | |||
458 | (pre_index+numtrans)->next = tp; | |||
459 | } | |||
460 | maxtrans = numtrans > maxtrans ? numtrans : maxtrans; | |||
461 | numtrans = 0; | |||
462 | } | |||
463 | if ((fsm+i)->target != -1) { | |||
464 | numtrans++; | |||
465 | } | |||
466 | laststate = (fsm+i)->state_no; | |||
467 | } | |||
468 | indexptr = NULL((void*)0); | |||
469 | cnt += round_up_to_power_of_two(h->last_net->statecount*sizeof(struct apply_state_index *)); | |||
470 | ||||
471 | if (cnt > mem_limit) { | |||
472 | cnt -= round_up_to_power_of_two(h->last_net->statecount*sizeof(struct apply_state_index *)); | |||
473 | goto memlimitnoindex; | |||
474 | } | |||
475 | ||||
476 | indexptr = calloc(h->last_net->statecount, sizeof(struct apply_state_index *)); | |||
477 | ||||
478 | if (h->has_flags && flags_only) { | |||
479 | /* Mark states that have flags */ | |||
480 | if (!(h->flagstates)) { | |||
481 | apply_mark_flagstates(h); | |||
482 | } | |||
483 | } | |||
484 | ||||
485 | for (i = maxtrans; i >= 0; i--) { | |||
486 | for (tp = pre_index+i; tp != NULL((void*)0); tp = tp->next) { | |||
487 | if (tp->state_no >= 0) { | |||
488 | if (i < densitycutoff) { | |||
489 | if (!(h->has_flags && flags_only && BITTEST(h->flagstates, tp->state_no)((h->flagstates)[((tp->state_no) >> 3)] & (1 << ((tp->state_no) & 7))))) { | |||
490 | continue; | |||
491 | } | |||
492 | } | |||
493 | cnt += round_up_to_power_of_two(h->sigma_size*sizeof(struct apply_state_index)); | |||
494 | if (cnt > mem_limit) { | |||
495 | cnt -= round_up_to_power_of_two(h->sigma_size*sizeof(struct apply_state_index)); | |||
496 | goto memlimit; | |||
497 | } | |||
498 | *(indexptr + tp->state_no) = malloc(h->sigma_size*sizeof(struct apply_state_index)); | |||
499 | ||||
500 | /* We make the tail of all index linked lists point to the index */ | |||
501 | /* for EPSILON, so that we automatically when EPSILON transitions */ | |||
502 | /* also when traversing an index. */ | |||
503 | ||||
504 | for (j = 0; j < h->sigma_size; j++) { | |||
505 | (*(indexptr + tp->state_no) + j)->fsmptr = -1; | |||
506 | if (j == EPSILON0) | |||
507 | (*(indexptr + tp->state_no) + j)->next = NULL((void*)0); | |||
508 | else | |||
509 | (*(indexptr + tp->state_no) + j)->next = (*(indexptr + tp->state_no)); /* all tails point to epsilon */ | |||
510 | } | |||
511 | } | |||
512 | } | |||
513 | } | |||
514 | ||||
515 | memlimit: | |||
516 | ||||
517 | for (i=0; (fsm+i)->state_no != -1; i++) { | |||
518 | iptr = *(indexptr + (fsm+i)->state_no); | |||
519 | if (iptr == NULL((void*)0) || (fsm+i)->target == -1) { | |||
520 | continue; | |||
521 | } | |||
522 | sym = inout == APPLY_INDEX_INPUT1 ? (fsm+i)->in : (fsm+i)->out; | |||
523 | ||||
524 | if (h->has_flags && (h->flag_lookup+sym)->type) { | |||
525 | sym = EPSILON0; | |||
526 | } | |||
527 | if (sym == UNKNOWN1) { /* We make the index of UNKNOWN point to IDENTITY */ | |||
528 | sym = IDENTITY2; /* since these are really the same symbol */ | |||
529 | } | |||
530 | if ((iptr+sym)->fsmptr == -1) { | |||
531 | (iptr+sym)->fsmptr = i; | |||
532 | } else { | |||
533 | cnt += round_up_to_power_of_two(sizeof(struct apply_state_index)); | |||
534 | tempiptr = calloc(1, sizeof(struct apply_state_index)); | |||
535 | ||||
536 | tempiptr->next = (iptr+sym)->next; | |||
537 | tempiptr->fsmptr = i; | |||
538 | (iptr+sym)->next = tempiptr; | |||
539 | } | |||
540 | } | |||
541 | ||||
542 | /* Free preindex */ | |||
543 | ||||
544 | memlimitnoindex: | |||
545 | ||||
546 | for (i = maxtrans; i >= 0; i--) { | |||
547 | for (tp = (pre_index+i)->next; tp != NULL((void*)0); tp = tpp) { | |||
548 | tpp = tp->next; | |||
549 | free(tp); | |||
550 | } | |||
551 | } | |||
552 | free(pre_index); | |||
553 | ||||
554 | if (inout == APPLY_INDEX_INPUT1) { | |||
555 | h->index_in = indexptr; | |||
556 | } else { | |||
557 | h->index_out = indexptr; | |||
558 | } | |||
559 | } | |||
560 | ||||
561 | int apply_binarysearch(struct apply_handle *h) { | |||
562 | int thisstate, nextsym, seeksym, thisptr, lastptr, midptr; | |||
563 | ||||
564 | thisptr = h->curr_ptr = h->ptr; | |||
565 | nextsym = (((h->mode) & DOWN16) == DOWN16) ? (h->gstates+h->curr_ptr)->in : (h->gstates+h->curr_ptr)->out; | |||
566 | if (nextsym == EPSILON0) | |||
567 | return 1; | |||
568 | if (nextsym == -1) | |||
569 | return 0; | |||
570 | if (h->ipos >= h->current_instring_length) { | |||
571 | return 0; | |||
572 | } | |||
573 | seeksym = (h->sigmatch_array+h->ipos)->signumber; | |||
574 | if (seeksym == nextsym || (nextsym == UNKNOWN1 && seeksym == IDENTITY2)) | |||
575 | return 1; | |||
576 | ||||
577 | thisstate = (h->gstates+thisptr)->state_no; | |||
578 | lastptr = *(h->statemap+thisstate)+*(h->numlines+thisstate)-1; | |||
579 | thisptr++; | |||
580 | ||||
581 | if (seeksym == IDENTITY2 || lastptr - thisptr < APPLY_BINSEARCH_THRESHOLD10) { | |||
582 | for ( ; thisptr <= lastptr; thisptr++) { | |||
583 | nextsym = (((h->mode) & DOWN16) == DOWN16) ? (h->gstates+thisptr)->in : (h->gstates+thisptr)->out; | |||
584 | if ((nextsym == seeksym) || (nextsym == UNKNOWN1 && seeksym == IDENTITY2)) { | |||
585 | h->curr_ptr = thisptr; | |||
586 | return 1; | |||
587 | } | |||
588 | if (nextsym > seeksym || nextsym == -1) { | |||
589 | return 0; | |||
590 | } | |||
591 | } | |||
592 | return 0; | |||
593 | } | |||
594 | ||||
595 | for (;;) { | |||
596 | if (thisptr > lastptr) { return 0; } | |||
597 | midptr = (thisptr+lastptr)/2; | |||
598 | nextsym = (((h->mode) & DOWN16) == DOWN16) ? (h->gstates+midptr)->in : (h->gstates+midptr)->out; | |||
599 | if (seeksym < nextsym) { | |||
600 | lastptr = midptr - 1; | |||
601 | continue; | |||
602 | } else if (seeksym > nextsym) { | |||
603 | thisptr = midptr + 1; | |||
604 | continue; | |||
605 | } else { | |||
606 | ||||
607 | while (((((h->mode) & DOWN16) == DOWN16) ? (h->gstates+(midptr-1))->in : (h->gstates+(midptr-1))->out) == seeksym) { | |||
608 | midptr--; /* Find first match in case of ties */ | |||
609 | } | |||
610 | h->curr_ptr = midptr; | |||
611 | return 1; | |||
612 | } | |||
613 | } | |||
614 | } | |||
615 | ||||
616 | int apply_follow_next_arc(struct apply_handle *h) { | |||
617 | char *fname, *fvalue; | |||
618 | int eatupi, eatupo, symin, symout, fneg; | |||
619 | int vcount, marksource, marktarget; | |||
620 | ||||
621 | /* Here we follow three possible search strategies: */ | |||
622 | /* (1) if the state in question has an index, we use that */ | |||
623 | /* (2) if the state is binary searchable, we use that */ | |||
624 | /* (3) otherwise we traverse arc-by-arc */ | |||
625 | /* Condition (2) needs arcs to be sorted in the proper */ | |||
626 | /* direction, and requires that the state be flag-free */ | |||
627 | /* For those states that aren't flag-free, (3) is used */ | |||
628 | ||||
629 | if (h->state_has_index) { | |||
630 | for ( ; h->iptr != NULL((void*)0) && h->iptr->fsmptr != -1; ) { | |||
631 | ||||
632 | h->ptr = h->curr_ptr = h->iptr->fsmptr; | |||
633 | if (((h->mode) & DOWN16) == DOWN16) { | |||
634 | symin = (h->gstates+h->curr_ptr)->in; | |||
635 | symout = (h->gstates+h->curr_ptr)->out; | |||
636 | } else { | |||
637 | symin = (h->gstates+h->curr_ptr)->out; | |||
638 | symout = (h->gstates+h->curr_ptr)->in; | |||
639 | } | |||
640 | ||||
641 | marksource = *(h->marks+(h->gstates+h->ptr)->state_no); | |||
642 | marktarget = *(h->marks+(h->gstates+(*(h->statemap+(h->gstates+h->curr_ptr)->target)))->state_no); | |||
643 | eatupi = apply_match_length(h, symin); | |||
644 | if (!(eatupi == -1 || -1-(h->ipos)-eatupi == marktarget)) { /* input 2x EPSILON loop check */ | |||
645 | if ((eatupi = apply_match_str(h, symin, h->ipos)) != -1) { | |||
646 | eatupo = apply_append(h, h->curr_ptr, symout); | |||
647 | if (h->obey_flags && h->has_flags && ((h->flag_lookup+symin)->type & (FLAG_UNIFY1|FLAG_CLEAR2|FLAG_POSITIVE16|FLAG_NEGATIVE8))) { | |||
648 | fname = (h->flag_lookup+symin)->name; | |||
649 | fvalue = h->oldflagvalue; | |||
650 | fneg = h->oldflagneg; | |||
651 | } else { | |||
652 | fname = fvalue = NULL((void*)0); | |||
653 | fneg = 0; | |||
654 | } | |||
655 | /* Push old position */ | |||
656 | apply_stack_push(h, marksource, fname, fvalue, fneg); | |||
657 | h->ptr = *(h->statemap+(h->gstates+h->curr_ptr)->target); | |||
658 | h->ipos += eatupi; | |||
659 | h->opos += eatupo; | |||
660 | apply_set_iptr(h); | |||
661 | return 1; | |||
662 | } | |||
663 | } | |||
664 | h->iptr = h->iptr->next; | |||
665 | } | |||
666 | return 0; | |||
667 | } else if ((h->binsearch && !(h->has_flags)) || (h->binsearch && !(BITTEST(h->flagstates, (h->gstates+h->ptr)->state_no)((h->flagstates)[(((h->gstates+h->ptr)->state_no) >> 3)] & (1 << (((h->gstates+h->ptr)-> state_no) & 7)))))) { | |||
668 | for (;;) { | |||
669 | if (apply_binarysearch(h)) { | |||
670 | if (((h->mode) & DOWN16) == DOWN16) { | |||
671 | symin = (h->gstates+h->curr_ptr)->in; | |||
672 | symout = (h->gstates+h->curr_ptr)->out; | |||
673 | } else { | |||
674 | symin = (h->gstates+h->curr_ptr)->out; | |||
675 | symout = (h->gstates+h->curr_ptr)->in; | |||
676 | } | |||
677 | ||||
678 | marksource = *(h->marks+(h->gstates+h->ptr)->state_no); | |||
679 | marktarget = *(h->marks+(h->gstates+(*(h->statemap+(h->gstates+h->curr_ptr)->target)))->state_no); | |||
680 | ||||
681 | eatupi = apply_match_length(h, symin); | |||
682 | if (eatupi != -1 && -1-(h->ipos)-eatupi != marktarget) { | |||
683 | if ((eatupi = apply_match_str(h, symin, h->ipos)) != -1) { | |||
684 | eatupo = apply_append(h, h->curr_ptr, symout); | |||
685 | ||||
686 | /* Push old position */ | |||
687 | apply_stack_push(h, marksource, NULL((void*)0), NULL((void*)0), 0); | |||
688 | ||||
689 | /* Follow arc */ | |||
690 | h->ptr = *(h->statemap+(h->gstates+h->curr_ptr)->target); | |||
691 | h->ipos += eatupi; | |||
692 | h->opos += eatupo; | |||
693 | apply_set_iptr(h); | |||
694 | return 1; | |||
695 | } | |||
696 | } | |||
697 | if ((h->gstates+h->curr_ptr)->state_no == (h->gstates+h->curr_ptr+1)->state_no) { | |||
698 | h->curr_ptr++; | |||
699 | h->ptr = h->curr_ptr; | |||
700 | if ((h->gstates+h->curr_ptr)-> target == -1) { | |||
701 | return 0; | |||
702 | } | |||
703 | continue; | |||
704 | } | |||
705 | } | |||
706 | return 0; | |||
707 | } | |||
708 | } else { | |||
709 | for (h->curr_ptr = h->ptr; (h->gstates+h->curr_ptr)->state_no == (h->gstates+h->ptr)->state_no && (h->gstates+h->curr_ptr)-> in != -1; (h->curr_ptr)++) { | |||
710 | ||||
711 | /* Select one random arc to follow out of all outgoing arcs */ | |||
712 | if ((h->mode & RANDOM1) == RANDOM1) { | |||
713 | vcount = 0; | |||
714 | for (h->curr_ptr = h->ptr; (h->gstates+h->curr_ptr)->state_no == (h->gstates+h->ptr)->state_no && (h->gstates+h->curr_ptr)-> in != -1; (h->curr_ptr)++) { | |||
715 | vcount++; | |||
716 | } | |||
717 | if (vcount > 0) { | |||
718 | h->curr_ptr = h->ptr + (rand() % vcount); | |||
719 | } else { | |||
720 | h->curr_ptr = h->ptr; | |||
721 | } | |||
722 | } | |||
723 | ||||
724 | if (((h->mode) & DOWN16) == DOWN16) { | |||
725 | symin = (h->gstates+h->curr_ptr)->in; | |||
726 | symout = (h->gstates+h->curr_ptr)->out; | |||
727 | } else { | |||
728 | symin = (h->gstates+h->curr_ptr)->out; | |||
729 | symout = (h->gstates+h->curr_ptr)->in; | |||
730 | } | |||
731 | ||||
732 | marksource = *(h->marks+(h->gstates+h->ptr)->state_no); | |||
733 | marktarget = *(h->marks+(h->gstates+(*(h->statemap+(h->gstates+h->curr_ptr)->target)))->state_no); | |||
734 | ||||
735 | eatupi = apply_match_length(h, symin); | |||
736 | ||||
737 | if (eatupi == -1 || -1-(h->ipos)-eatupi == marktarget) { continue; } /* loop check */ | |||
738 | if ((eatupi = apply_match_str(h, symin, h->ipos)) != -1) { | |||
739 | eatupo = apply_append(h, h->curr_ptr, symout); | |||
740 | if (h->obey_flags && h->has_flags && ((h->flag_lookup+symin)->type & (FLAG_UNIFY1|FLAG_CLEAR2|FLAG_POSITIVE16|FLAG_NEGATIVE8))) { | |||
741 | ||||
742 | fname = (h->flag_lookup+symin)->name; | |||
743 | fvalue = h->oldflagvalue; | |||
744 | fneg = h->oldflagneg; | |||
745 | } else { | |||
746 | fname = fvalue = NULL((void*)0); | |||
747 | fneg = 0; | |||
748 | } | |||
749 | ||||
750 | /* Push old position */ | |||
751 | apply_stack_push(h, marksource, fname, fvalue, fneg); | |||
752 | ||||
753 | /* Follow arc */ | |||
754 | h->ptr = *(h->statemap+(h->gstates+h->curr_ptr)->target); | |||
755 | h->ipos += eatupi; | |||
756 | h->opos += eatupo; | |||
757 | apply_set_iptr(h); | |||
758 | return(1); | |||
759 | } | |||
760 | } | |||
761 | return(0); | |||
762 | } | |||
763 | } | |||
764 | ||||
765 | char *apply_return_string(struct apply_handle *h) { | |||
766 | /* Stick a 0 to endpos to avoid getting old accumulated gunk strings printed */ | |||
767 | *(h->outstring+h->opos) = '\0'; | |||
768 | if (((h->mode) & RANDOM1) == RANDOM1) { | |||
769 | /* To end or not to end */ | |||
770 | if (!(rand() % 2)) { | |||
771 | apply_stack_clear(h); | |||
772 | h->iterator = 0; | |||
773 | h->iterate_old = 0; | |||
774 | return(h->outstring); | |||
775 | } | |||
776 | } else { | |||
777 | return(h->outstring); | |||
778 | } | |||
779 | return(NULL((void*)0)); | |||
780 | } | |||
781 | ||||
782 | void apply_mark_state(struct apply_handle *h) { | |||
783 | ||||
784 | /* This controls the how epsilon-loops are traversed. Such loops can */ | |||
785 | /* only be followed once to reach a state already visited in the DFS. */ | |||
786 | /* This requires that we store the number of input symbols consumed */ | |||
787 | /* whenever we enter a new state. If we enter the same state twice */ | |||
788 | /* with the same number of input symbols consumed, we abandon the search */ | |||
789 | /* for that branch. Flags are epsilons from this point of view. */ | |||
790 | /* The encoding of h->marks is: */ | |||
791 | /* 0 = unseen, +ipos = seen at ipos, -ipos = seen second time at ipos */ | |||
792 | ||||
793 | if ((h->mode & RANDOM1) != RANDOM1) { | |||
794 | if (*(h->marks+(h->gstates+h->ptr)->state_no) == h->ipos+1) { | |||
795 | *(h->marks+(h->gstates+h->ptr)->state_no) = -(h->ipos+1); | |||
796 | } else { | |||
797 | *(h->marks+(h->gstates+h->ptr)->state_no) = h->ipos+1; | |||
798 | } | |||
799 | } | |||
800 | } | |||
801 | ||||
802 | void apply_skip_this_arc(struct apply_handle *h) { | |||
803 | /* If we have index ptr */ | |||
804 | if (h->iptr) { | |||
805 | h->ptr = h->iptr->fsmptr; | |||
806 | h->iptr = h->iptr->next; | |||
807 | /* Otherwise */ | |||
808 | } else { | |||
809 | (h->ptr)++; | |||
810 | } | |||
811 | } | |||
812 | ||||
813 | int apply_at_last_arc(struct apply_handle *h) { | |||
814 | int seeksym, nextsym; | |||
815 | if (h->state_has_index) { | |||
816 | if (h->iptr->next == NULL((void*)0) || h->iptr->next->fsmptr == -1) { | |||
817 | return 1; | |||
818 | } | |||
819 | } else { | |||
820 | if ((h->binsearch && !(h->has_flags)) || (h->binsearch && !(BITTEST(h->flagstates, (h->gstates+h->ptr)->state_no)((h->flagstates)[(((h->gstates+h->ptr)->state_no) >> 3)] & (1 << (((h->gstates+h->ptr)-> state_no) & 7)))))) { | |||
821 | if ((h->gstates+h->ptr)->state_no != (h->gstates+h->ptr+1)->state_no) { | |||
822 | return 1; | |||
823 | } | |||
824 | seeksym = (h->sigmatch_array+h->ipos)->signumber; | |||
825 | nextsym = (((h->mode) & DOWN16) == DOWN16) ? (h->gstates+h->ptr)->in : (h->gstates+h->ptr)->out; | |||
826 | if (nextsym == -1 || seeksym < nextsym) { | |||
827 | return 1; | |||
828 | } | |||
829 | } else { | |||
830 | if ((h->gstates+h->ptr)->state_no != (h->gstates+h->ptr+1)->state_no) { | |||
831 | return 1; | |||
832 | } | |||
833 | } | |||
834 | } | |||
835 | return 0; | |||
836 | } | |||
837 | ||||
838 | /* map h->ptr (line pointer) to h->iptr (index pointer) */ | |||
839 | void apply_set_iptr(struct apply_handle *h) { | |||
840 | struct apply_state_index **idx, *sidx; | |||
841 | int stateno, seeksym; | |||
842 | /* Check if state has index */ | |||
843 | if ((idx = ((h->mode) & DOWN16) == DOWN16 ? (h->index_in) : (h->index_out)) == NULL((void*)0)) { | |||
844 | return; | |||
845 | } | |||
846 | ||||
847 | h->iptr = NULL((void*)0); | |||
848 | h->state_has_index = 0; | |||
849 | stateno = (h->gstates+h->ptr)->state_no; | |||
850 | if (stateno < 0) { | |||
851 | return; | |||
852 | } | |||
853 | ||||
854 | sidx = *(idx + stateno); | |||
855 | if (sidx == NULL((void*)0)) { return; } | |||
856 | seeksym = (h->sigmatch_array+h->ipos)->signumber; | |||
857 | h->state_has_index = 1; | |||
858 | sidx = sidx + seeksym; | |||
859 | if (sidx->fsmptr == -1) { | |||
860 | if (sidx->next == NULL((void*)0)) { | |||
861 | return; | |||
862 | } else { | |||
863 | sidx = sidx->next; | |||
864 | } | |||
865 | } | |||
866 | h->iptr = sidx; | |||
867 | if (sidx->fsmptr == -1) { | |||
868 | h->iptr = NULL((void*)0); | |||
869 | } | |||
870 | h->state_has_index = 1; | |||
871 | } | |||
872 | ||||
873 | char *apply_net(struct apply_handle *h) { | |||
874 | ||||
875 | /* We perform a basic DFS on the graph, with two minor complications: */ | |||
876 | ||||
877 | /* 1. We keep a mark for each state which indicates how many input symbols */ | |||
878 | /* we had consumed the last time we entered that state on the current */ | |||
879 | /* "run." If we reach a state seen twice without consuming input, we */ | |||
880 | /* terminate that branch of the search. */ | |||
881 | /* As we pop a position, we also unmark the state we came from. */ | |||
882 | ||||
883 | /* 2. If the graph has flags, we push the previous flag value when */ | |||
884 | /* traversing a flag-modifying arc (P,U,N, or C). This is because a */ | |||
885 | /* flag may have been set during the previous "run" and may not apply. */ | |||
886 | /* Since we're doing a DFS, we can be sure to return to the previous */ | |||
887 | /* global flag state by just remembering that last flag change. */ | |||
888 | ||||
889 | /* 3. The whole system needs to work as an iterator, meaning we need to */ | |||
890 | /* store the global state of the search so we can resume it later to */ | |||
891 | /* to yield more possible output words with the same input string. */ | |||
892 | ||||
893 | char *returnstring; | |||
894 | ||||
895 | if (h->iterate_old == 1) { /* If called with NULL as the input word, this will be set */ | |||
896 | goto resume; | |||
897 | } | |||
898 | ||||
899 | h->iptr = NULL((void*)0); h->ptr = 0; h->ipos = 0; h->opos = 0; | |||
900 | apply_set_iptr(h); | |||
901 | ||||
902 | apply_stack_clear(h); | |||
903 | ||||
904 | if (h->has_flags) { | |||
905 | apply_clear_flags(h); | |||
906 | } | |||
907 | ||||
908 | /* "The use of four-letter words like goto can occasionally be justified */ | |||
909 | /* even in the best of company." Knuth (1974). */ | |||
910 | ||||
911 | goto L2; | |||
912 | ||||
913 | while(!apply_stack_isempty(h)) { | |||
914 | apply_stack_pop(h); | |||
915 | /* If last line was popped */ | |||
916 | if (apply_at_last_arc(h)) { | |||
917 | *(h->marks+(h->gstates+h->ptr)->state_no) = 0; /* Unmark */ | |||
918 | continue; /* pop next */ | |||
919 | } | |||
920 | apply_skip_this_arc(h); /* skip old pushed arc */ | |||
921 | L1: | |||
922 | if (!apply_follow_next_arc(h)) { | |||
923 | *(h->marks+(h->gstates+h->ptr)->state_no) = 0; /* Unmark */ | |||
924 | continue; /* pop next */ | |||
925 | } | |||
926 | L2: | |||
927 | /* Print accumulated string upon entry to state */ | |||
928 | if ((h->gstates+h->ptr)->final_state == 1 && (h->ipos == h->current_instring_length || ((h->mode) & ENUMERATE2) == ENUMERATE2)) { | |||
929 | if ((returnstring = (apply_return_string(h))) != NULL((void*)0)) { | |||
930 | return(returnstring); | |||
931 | } | |||
932 | } | |||
933 | ||||
934 | resume: | |||
935 | apply_mark_state(h); /* Mark upon arrival to new state */ | |||
936 | goto L1; | |||
937 | } | |||
938 | if ((h->mode & RANDOM1) == RANDOM1) { | |||
939 | apply_stack_clear(h); | |||
940 | h->iterator = 0; | |||
941 | h->iterate_old = 0; | |||
942 | return(h->outstring); | |||
943 | } | |||
944 | apply_stack_clear(h); | |||
945 | return NULL((void*)0); | |||
946 | } | |||
947 | ||||
948 | int apply_append(struct apply_handle *h, int cptr, int sym) { | |||
949 | ||||
950 | char *astring, *bstring, *pstring; | |||
951 | int symin, symout, len, alen, blen, idlen; | |||
952 | ||||
953 | symin = (h->gstates+cptr)->in; | |||
954 | symout = (h->gstates+cptr)->out; | |||
955 | astring = ((h->sigs)+symin)->symbol; | |||
956 | alen = ((h->sigs)+symin)->length; | |||
957 | bstring = ((h->sigs)+symout)->symbol; | |||
958 | blen = ((h->sigs)+symout)->length; | |||
959 | ||||
960 | while (alen + blen + h->opos + 2 + strlen(h->separator) >= h->outstringtop) { | |||
961 | // while (alen + blen + h->opos + 3 >= h->outstringtop) { | |||
962 | h->outstring = realloc(h->outstring, sizeof(char) * ((h->outstringtop) * 2)); | |||
963 | (h->outstringtop) *= 2; | |||
964 | } | |||
965 | ||||
966 | if ((h->has_flags) && !h->show_flags && (h->flag_lookup+symin)->type) { | |||
967 | astring = ""; alen = 0; | |||
968 | } | |||
969 | if (h->has_flags && !h->show_flags && (h->flag_lookup+symout)->type) { | |||
970 | bstring = ""; blen = 0; | |||
971 | } | |||
972 | if (((h->mode) & ENUMERATE2) == ENUMERATE2) { | |||
973 | /* Print both sides separated by colon */ | |||
974 | /* if we're printing "words" */ | |||
975 | if (((h->mode) & (UPPER64 | LOWER32)) == (UPPER64|LOWER32)) { | |||
976 | ||||
977 | if (astring == bstring) { | |||
978 | strcpy(h->outstring+h->opos, astring); | |||
979 | len = alen; | |||
980 | } else { | |||
981 | strcpy(h->outstring+h->opos, astring); | |||
982 | // strcpy(h->outstring+h->opos+alen,":"); | |||
983 | strcpy(h->outstring+h->opos+alen,h->separator); | |||
984 | //strcpy(h->outstring+h->opos+alen+1,bstring); | |||
985 | strcpy(h->outstring+h->opos+alen+strlen(h->separator),bstring); | |||
986 | // len = alen+blen+1; | |||
987 | len = alen+blen+strlen(h->separator); | |||
988 | } | |||
989 | } | |||
990 | ||||
991 | /* Print one side only */ | |||
992 | if (((h->mode) & (UPPER64|LOWER32)) != (UPPER64|LOWER32)) { | |||
993 | ||||
994 | if (symin == EPSILON0) { | |||
995 | astring = ""; alen = 0; | |||
996 | } | |||
997 | if (symout == EPSILON0) { | |||
998 | bstring = ""; blen = 0; | |||
999 | } | |||
1000 | if (((h->mode) & (UPPER64|LOWER32)) == UPPER64) { | |||
1001 | pstring = astring; | |||
1002 | len = alen; | |||
1003 | } else { | |||
1004 | pstring = bstring; | |||
1005 | len = blen; | |||
1006 | } | |||
1007 | //strcpy(h->outstring+h->opos, pstring); | |||
1008 | memcpy(h->outstring+h->opos, pstring, len); | |||
1009 | } | |||
1010 | } | |||
1011 | if (((h->mode) & ENUMERATE2) != ENUMERATE2) { | |||
1012 | /* Print pairs is ON and symbols are different */ | |||
1013 | if (h->print_pairs && (symin != symout)) { | |||
1014 | ||||
1015 | if (symin == UNKNOWN1 && ((h->mode) & DOWN16) == DOWN16) | |||
1016 | strncpy(astring, h->instring+h->ipos, 1); | |||
1017 | if (symout == UNKNOWN1 && ((h->mode) & UP8) == UP8) | |||
1018 | strncpy(bstring, h->instring+h->ipos, 1); | |||
1019 | strcpy(h->outstring+h->opos, "<"); | |||
1020 | strcpy(h->outstring+h->opos+1, astring); | |||
1021 | //strcpy(h->outstring+h->opos+alen+1,":"); | |||
1022 | strcpy(h->outstring+h->opos+alen+1,h->separator); | |||
1023 | //strcpy(h->outstring+h->opos+alen+2,bstring); | |||
1024 | strcpy(h->outstring+h->opos+alen+1+strlen(h->separator), bstring); | |||
1025 | //strcpy(h->outstring+h->opos+alen+blen+2,">"); | |||
1026 | strcpy(h->outstring+h->opos+alen+blen+1+strlen(h->separator),">"); | |||
1027 | //len = alen+blen+3; | |||
1028 | len = alen+blen+2+strlen(h->separator); | |||
1029 | } | |||
1030 | ||||
1031 | else if (sym == IDENTITY2) { | |||
1032 | /* Apply up/down */ | |||
1033 | //idlen = utf8skip(h->instring+h->ipos)+1; | |||
1034 | idlen = (h->sigmatch_array+h->ipos)->consumes; // here | |||
1035 | strncpy(h->outstring+h->opos, h->instring+h->ipos, idlen); | |||
1036 | strncpy(h->outstring+h->opos+idlen,"", 1); | |||
1037 | len = idlen; | |||
1038 | } else if (sym == EPSILON0) { | |||
1039 | return(0); | |||
1040 | } else { | |||
1041 | if (((h->mode) & DOWN16) == DOWN16) { | |||
1042 | pstring = bstring; | |||
1043 | len = blen; | |||
1044 | } else { | |||
1045 | pstring = astring; | |||
1046 | len = alen; | |||
1047 | } | |||
1048 | memcpy(h->outstring+h->opos, pstring, len); | |||
1049 | } | |||
1050 | } | |||
1051 | if (h->print_space && len > 0) { | |||
1052 | strcpy(h->outstring+h->opos+len, h->space_symbol); | |||
1053 | len++; | |||
1054 | } | |||
1055 | return(len); | |||
1056 | } | |||
1057 | ||||
1058 | int apply_match_length(struct apply_handle *h, int symbol) { | |||
1059 | if (symbol == EPSILON0) { | |||
1060 | return 0; | |||
1061 | } | |||
1062 | if (h->has_flags && (h->flag_lookup+symbol)->type) { | |||
1063 | return 0; | |||
1064 | } | |||
1065 | if (((h->mode) & ENUMERATE2) == ENUMERATE2) { | |||
1066 | return 0; | |||
1067 | } | |||
1068 | if (h->ipos >= h->current_instring_length) { | |||
1069 | return -1; | |||
1070 | } | |||
1071 | if ((h->sigmatch_array+(h->ipos))->signumber == symbol) { | |||
1072 | return((h->sigmatch_array+(h->ipos))->consumes); | |||
1073 | } | |||
1074 | if ((symbol == IDENTITY2) || (symbol == UNKNOWN1)) { | |||
1075 | if ((h->sigmatch_array+h->ipos)->signumber == IDENTITY2) { | |||
1076 | return((h->sigmatch_array+(h->ipos))->consumes); | |||
1077 | } | |||
1078 | } | |||
1079 | return -1; | |||
1080 | } | |||
1081 | ||||
1082 | /* Match a symbol from sigma against the current position in string */ | |||
1083 | /* Return the number of symbols consumed in input string */ | |||
1084 | /* For flags, we consume 0 symbols of the input string, naturally */ | |||
1085 | ||||
1086 | int apply_match_str(struct apply_handle *h, int symbol, int position) { | |||
1087 | if (((h->mode) & ENUMERATE2) == ENUMERATE2) { | |||
1088 | if (h->has_flags && (h->flag_lookup+symbol)->type) { | |||
1089 | if (!h->obey_flags) { | |||
1090 | return 0; | |||
1091 | } | |||
1092 | if (apply_check_flag(h,(h->flag_lookup+symbol)->type, (h->flag_lookup+symbol)->name, (h->flag_lookup+symbol)->value) == SUCCEED1) { | |||
1093 | return 0; | |||
1094 | } else { | |||
1095 | return -1; | |||
1096 | } | |||
1097 | } | |||
1098 | return(0); | |||
1099 | } | |||
1100 | ||||
1101 | ||||
1102 | if (symbol == EPSILON0) { | |||
1103 | return 0; | |||
1104 | } | |||
1105 | ||||
1106 | /* If symbol is a flag, we need to check consistency */ | |||
1107 | if (h->has_flags && (h->flag_lookup+symbol)->type) { | |||
1108 | if (!h->obey_flags) { | |||
1109 | return 0; | |||
1110 | } | |||
1111 | if (apply_check_flag(h,(h->flag_lookup+symbol)->type, (h->flag_lookup+symbol)->name, (h->flag_lookup+symbol)->value) == SUCCEED1) { | |||
1112 | return 0; | |||
1113 | } else { | |||
1114 | return -1; | |||
1115 | } | |||
1116 | } | |||
1117 | ||||
1118 | if (position >= h->current_instring_length) { | |||
1119 | return -1; | |||
1120 | } | |||
1121 | if ((h->sigmatch_array+position)->signumber == symbol) { | |||
1122 | return((h->sigmatch_array+position)->consumes); | |||
1123 | } | |||
1124 | if ((symbol == IDENTITY2) || (symbol == UNKNOWN1)) { | |||
1125 | if ((h->sigmatch_array+position)->signumber == IDENTITY2) { | |||
1126 | return((h->sigmatch_array+position)->consumes); | |||
1127 | } | |||
1128 | } | |||
1129 | return -1; | |||
1130 | } | |||
1131 | ||||
1132 | void apply_create_statemap(struct apply_handle *h, struct fsm *net) { | |||
1133 | int i; | |||
1134 | struct fsm_state *fsm; | |||
1135 | fsm = net->states; | |||
1136 | h->statemap = malloc(sizeof(int)*net->statecount); | |||
1137 | h->marks = malloc(sizeof(int)*net->statecount); | |||
1138 | h->numlines = malloc(sizeof(int)*net->statecount); | |||
1139 | ||||
1140 | for (i=0; i < net->statecount; i++) { | |||
1141 | *(h->numlines+i) = 0; /* Only needed in binary search */ | |||
1142 | *(h->statemap+i) = -1; | |||
1143 | *(h->marks+i) = 0; | |||
1144 | } | |||
1145 | for (i=0; (fsm+i)->state_no != -1; i++) { | |||
1146 | *(h->numlines+(fsm+i)->state_no) = *(h->numlines+(fsm+i)->state_no)+1; | |||
1147 | if (*(h->statemap+(fsm+i)->state_no) == -1) { | |||
1148 | *(h->statemap+(fsm+i)->state_no) = i; | |||
1149 | } | |||
1150 | } | |||
1151 | } | |||
1152 | ||||
1153 | void apply_add_sigma_trie(struct apply_handle *h, int number, char *symbol, int len) { | |||
1154 | ||||
1155 | /* Create a trie of sigma symbols (prefixes) so we can */ | |||
1156 | /* quickly (in O(n)) tokenize an arbitrary string into */ | |||
1157 | /* integer sequences representing symbols, using longest- */ | |||
1158 | /* leftmost factorization. */ | |||
1159 | ||||
1160 | int i; | |||
1161 | struct sigma_trie *st; | |||
1162 | struct sigma_trie_arrays *sta; | |||
1163 | ||||
1164 | st = h->sigma_trie; | |||
1165 | for (i = 0; i < len; i++) { | |||
1166 | st = st+(unsigned char)*(symbol+i); | |||
1167 | if (i == (len-1)) { | |||
1168 | st->signum = number; | |||
1169 | } else { | |||
1170 | if (st->next == NULL((void*)0)) { | |||
1171 | st->next = calloc(256,sizeof(struct sigma_trie)); | |||
1172 | st = st->next; | |||
1173 | /* store these arrays to free them later */ | |||
1174 | sta = malloc(sizeof(struct sigma_trie_arrays)); | |||
1175 | sta->arr = st; | |||
1176 | sta->next = h->sigma_trie_arrays; | |||
1177 | h->sigma_trie_arrays = sta; | |||
1178 | } else { | |||
1179 | st = st->next; | |||
1180 | } | |||
1181 | } | |||
1182 | } | |||
1183 | } | |||
1184 | ||||
1185 | void apply_mark_flagstates(struct apply_handle *h) { | |||
1186 | int i; | |||
1187 | struct fsm_state *fsm; | |||
1188 | ||||
1189 | /* Create bitarray with those states that have a flag symbol on an arc */ | |||
1190 | /* This is needed to decide whether we can perform a binary search. */ | |||
1191 | ||||
1192 | if (!h->has_flags || h->flag_lookup == NULL((void*)0)) { | |||
1193 | return; | |||
1194 | } | |||
1195 | if (h->flagstates) { | |||
1196 | free(h->flagstates); | |||
1197 | } | |||
1198 | h->flagstates = calloc(BITNSLOTS(h->last_net->statecount)((h->last_net->statecount + 8 - 1) / 8), sizeof(uint8_t)); | |||
1199 | fsm = h->last_net->states; | |||
1200 | for (i=0; (fsm+i)->state_no != -1; i++) { | |||
1201 | if ((fsm+i)->target == -1) { | |||
1202 | continue; | |||
1203 | } | |||
1204 | if ((h->flag_lookup+(fsm+i)->in)->type) { | |||
1205 | BITSET(h->flagstates,(fsm+i)->state_no)((h->flagstates)[(((fsm+i)->state_no) >> 3)] |= ( 1 << (((fsm+i)->state_no) & 7))); | |||
1206 | } | |||
1207 | if ((h->flag_lookup+(fsm+i)->out)->type) { | |||
1208 | BITSET(h->flagstates,(fsm+i)->state_no)((h->flagstates)[(((fsm+i)->state_no) >> 3)] |= ( 1 << (((fsm+i)->state_no) & 7))); | |||
1209 | } | |||
1210 | } | |||
1211 | } | |||
1212 | ||||
1213 | void apply_create_sigarray(struct apply_handle *h, struct fsm *net) { | |||
1214 | struct sigma *sig; | |||
1215 | int i, maxsigma; | |||
1216 | ||||
1217 | maxsigma = sigma_max(net->sigma); | |||
1218 | h->sigma_size = maxsigma+1; | |||
1219 | // Default size created at init, resized later if necessary | |||
1220 | h->sigmatch_array = calloc(1024,sizeof(struct sigmatch_array)); | |||
1221 | h->sigmatch_array_size = 1024; | |||
1222 | ||||
1223 | h->sigs = malloc(sizeof(struct sigs)*(maxsigma+1)); | |||
1224 | h->has_flags = 0; | |||
1225 | h->flag_list = NULL((void*)0); | |||
1226 | ||||
1227 | /* Malloc first array of trie and store trie ptrs to be able to free later */ | |||
1228 | /* when apply_clear() is called. */ | |||
1229 | ||||
1230 | h->sigma_trie = calloc(256,sizeof(struct sigma_trie)); | |||
1231 | h->sigma_trie_arrays = malloc(sizeof(struct sigma_trie_arrays)); | |||
1232 | h->sigma_trie_arrays->arr = h->sigma_trie; | |||
1233 | h->sigma_trie_arrays->next = NULL((void*)0); | |||
1234 | ||||
1235 | for (i=0;i<256;i++) | |||
1236 | (h->sigma_trie+i)->next = NULL((void*)0); | |||
1237 | for (sig = h->gsigma; sig != NULL((void*)0) && sig->number != -1; sig = sig->next) { | |||
1238 | if (flag_check(sig->symbol)) { | |||
1239 | h->has_flags = 1; | |||
1240 | apply_add_flag(h, flag_get_name(sig->symbol)); | |||
1241 | } | |||
1242 | (h->sigs+(sig->number))->symbol = sig->symbol; | |||
1243 | (h->sigs+(sig->number))->length = strlen(sig->symbol); | |||
1244 | /* Add sigma entry to trie */ | |||
1245 | if (sig->number > IDENTITY2) { | |||
1246 | apply_add_sigma_trie(h, sig->number, sig->symbol, (h->sigs+(sig->number))->length); | |||
1247 | } | |||
1248 | } | |||
1249 | if (maxsigma >= IDENTITY2) { | |||
1250 | (h->sigs+EPSILON0)->symbol = h->epsilon_symbol; | |||
1251 | (h->sigs+EPSILON0)->length = strlen(h->epsilon_symbol); | |||
1252 | (h->sigs+UNKNOWN1)->symbol = "?"; | |||
1253 | (h->sigs+UNKNOWN1)->length = 1; | |||
1254 | (h->sigs+IDENTITY2)->symbol = "@"; | |||
1255 | (h->sigs+IDENTITY2)->length = 1; | |||
1256 | } | |||
1257 | if (h->has_flags) { | |||
1258 | ||||
1259 | h->flag_lookup = malloc(sizeof(struct flag_lookup)*(maxsigma+1)); | |||
1260 | for (i=0; i <= maxsigma; i++) { | |||
1261 | (h->flag_lookup+i)->type = 0; | |||
1262 | (h->flag_lookup+i)->name = NULL((void*)0); | |||
1263 | (h->flag_lookup+i)->value = NULL((void*)0); | |||
1264 | } | |||
1265 | for (sig = h->gsigma; sig != NULL((void*)0) ; sig = sig->next) { | |||
1266 | if (flag_check(sig->symbol)) { | |||
1267 | (h->flag_lookup+sig->number)->type = flag_get_type(sig->symbol); | |||
1268 | (h->flag_lookup+sig->number)->name = flag_get_name(sig->symbol); | |||
1269 | (h->flag_lookup+sig->number)->value = flag_get_value(sig->symbol); | |||
1270 | } | |||
1271 | } | |||
1272 | apply_mark_flagstates(h); | |||
1273 | } | |||
1274 | } | |||
1275 | ||||
1276 | /* We need to know which symbols in sigma we can match for all positions */ | |||
1277 | /* in the input string. Alternatively, if there is no input string as is the case */ | |||
1278 | /* when we just list the words or randomly search the graph, we can match */ | |||
1279 | /* any symbol in sigma. */ | |||
1280 | ||||
1281 | /* We create an array that for each position in the input string */ | |||
1282 | /* has information on which symbol we can match at that position */ | |||
1283 | /* as well as how many symbols matching consumes */ | |||
1284 | ||||
1285 | void apply_create_sigmatch(struct apply_handle *h) { | |||
1286 | char *symbol; | |||
1287 | struct sigma_trie *st; | |||
1288 | int i, j, inlen, lastmatch, consumes, cons; | |||
1289 | /* We create a sigmatch array only in case we match against a real string */ | |||
1290 | if (((h->mode) & ENUMERATE2) == ENUMERATE2) { | |||
1291 | return; | |||
1292 | } | |||
1293 | symbol = h->instring; | |||
1294 | inlen = strlen(symbol); | |||
1295 | h->current_instring_length = inlen; | |||
1296 | if (inlen >= h->sigmatch_array_size) { | |||
1297 | free(h->sigmatch_array); | |||
1298 | h->sigmatch_array = malloc(sizeof(struct sigmatch_array)*(inlen)); | |||
1299 | h->sigmatch_array_size = inlen; | |||
1300 | } | |||
1301 | /* Find longest match in alphabet at current position */ | |||
1302 | /* by traversing the trie of alphabet symbols */ | |||
1303 | for (i=0; i < inlen; i += consumes ) { | |||
1304 | st = h->sigma_trie; | |||
1305 | for (j=0, lastmatch = 0; ; j++) { | |||
1306 | if (*(symbol+i+j) == '\0') { | |||
1307 | break; | |||
1308 | } | |||
1309 | st = st+(unsigned char)*(symbol+i+j); | |||
1310 | if (st->signum != 0) { | |||
1311 | lastmatch = st->signum; | |||
1312 | if (st->next == NULL((void*)0)) | |||
1313 | break; | |||
1314 | st = st->next; | |||
1315 | } else if (st->next != NULL((void*)0)) { | |||
1316 | st = st->next; | |||
1317 | } else { | |||
1318 | break; | |||
1319 | } | |||
1320 | } | |||
1321 | if (lastmatch != 0) { | |||
1322 | (h->sigmatch_array+i)->signumber = lastmatch; | |||
1323 | consumes = (h->sigs+lastmatch)->length; | |||
1324 | } else { | |||
1325 | /* Not found in trie */ | |||
1326 | (h->sigmatch_array+i)->signumber = IDENTITY2; | |||
1327 | consumes = utf8skip(symbol+i)+1; | |||
1328 | } | |||
1329 | ||||
1330 | /* If we now find trailing unicode combining characters (0300-036F): */ | |||
1331 | /* (1) Merge them all with current symbol */ | |||
1332 | /* (2) Declare the whole sequence one ? (IDENTITY) symbol */ | |||
1333 | /* Step 2 is motivated by the fact that */ | |||
1334 | /* if the input is S(symbol) + D(diacritic) */ | |||
1335 | /* and SD were a symbol in the alphabet, then this would have been */ | |||
1336 | /* found when searching the alphabet symbols earlier, so SD+ => ? */ | |||
1337 | /* Note that this means that a multi-char symbol followed by a */ | |||
1338 | /* diacritic gets converted to a single ?, e.g. */ | |||
1339 | /* [TAG] + D => ? if [TAG] is in the alphabet, but [TAG]+D isn't. */ | |||
1340 | ||||
1341 | for ( ; (cons = utf8iscombining((unsigned char *)(symbol+i+consumes))); consumes += cons) { | |||
1342 | (h->sigmatch_array+i)->signumber = IDENTITY2; | |||
1343 | } | |||
1344 | (h->sigmatch_array+i)->consumes = consumes; | |||
1345 | } | |||
1346 | } | |||
1347 | ||||
1348 | void apply_add_flag(struct apply_handle *h, char *name) { | |||
1349 | struct flag_list *flist, *flist_prev; | |||
1350 | if (h->flag_list == NULL((void*)0)) { | |||
1351 | flist = h->flag_list = malloc(sizeof(struct flag_list)); | |||
1352 | } else { | |||
1353 | for (flist = h->flag_list; flist != NULL((void*)0); flist_prev = flist, flist = flist->next) { | |||
1354 | if (strcmp(flist->name, name) == 0) { | |||
1355 | return; | |||
1356 | } | |||
1357 | } | |||
1358 | flist = malloc(sizeof(struct flag_list)); | |||
1359 | flist_prev->next = flist; | |||
1360 | } | |||
1361 | flist->name = name; | |||
1362 | flist->value = NULL((void*)0); | |||
1363 | flist->neg = 0; | |||
1364 | flist->next = NULL((void*)0); | |||
1365 | return; | |||
1366 | } | |||
1367 | ||||
1368 | void apply_clear_flags(struct apply_handle *h) { | |||
1369 | struct flag_list *flist; | |||
1370 | for (flist = h->flag_list; flist != NULL((void*)0); flist = flist->next) { | |||
1371 | flist->value = NULL((void*)0); | |||
1372 | flist->neg = 0; | |||
1373 | } | |||
1374 | return; | |||
1375 | } | |||
1376 | ||||
1377 | /* Check for flag consistency by looking at the current states of */ | |||
1378 | /* flags in flist */ | |||
1379 | ||||
1380 | int apply_check_flag(struct apply_handle *h, int type, char *name, char *value) { | |||
1381 | struct flag_list *flist, *flist2; | |||
1382 | for (flist = h->flag_list; flist != NULL((void*)0); flist = flist->next) { | |||
| ||||
1383 | if (strcmp(flist->name, name) == 0) { | |||
1384 | break; | |||
1385 | } | |||
1386 | } | |||
1387 | h->oldflagvalue = flist->value; | |||
| ||||
1388 | h->oldflagneg = flist->neg; | |||
1389 | ||||
1390 | if (type == FLAG_UNIFY1) { | |||
1391 | if (flist->value == NULL((void*)0)) { | |||
1392 | flist->value = strdup(value); | |||
1393 | return SUCCEED1; | |||
1394 | } | |||
1395 | else if (strcmp(value, flist->value) == 0 && flist->neg == 0) { | |||
1396 | return SUCCEED1; | |||
1397 | } else if (strcmp(value, flist->value) != 0 && flist->neg == 1) { | |||
1398 | flist->value = strdup(value); | |||
1399 | flist->neg = 0; | |||
1400 | return SUCCEED1; | |||
1401 | } | |||
1402 | return FAIL0; | |||
1403 | } | |||
1404 | ||||
1405 | if (type == FLAG_CLEAR2) { | |||
1406 | flist->value = NULL((void*)0); | |||
1407 | flist->neg = 0; | |||
1408 | return SUCCEED1; | |||
1409 | } | |||
1410 | ||||
1411 | if (type == FLAG_DISALLOW4) { | |||
1412 | if (flist->value == NULL((void*)0)) { | |||
1413 | return SUCCEED1; | |||
1414 | } | |||
1415 | if (value == NULL((void*)0) && flist->value != NULL((void*)0)) { | |||
1416 | return FAIL0; | |||
1417 | } | |||
1418 | if (strcmp(value, flist->value) != 0) { | |||
1419 | if (flist->neg == 1) | |||
1420 | return FAIL0; | |||
1421 | return SUCCEED1; | |||
1422 | } | |||
1423 | if (strcmp(value, flist->value) == 0 && flist->neg == 1) { | |||
1424 | return SUCCEED1; | |||
1425 | } | |||
1426 | return FAIL0; | |||
1427 | } | |||
1428 | ||||
1429 | if (type == FLAG_NEGATIVE8) { | |||
1430 | flist->value = value; | |||
1431 | flist->neg = 1; | |||
1432 | return SUCCEED1; | |||
1433 | } | |||
1434 | ||||
1435 | if (type == FLAG_POSITIVE16) { | |||
1436 | flist->value = value; | |||
1437 | flist->neg = 0; | |||
1438 | return SUCCEED1; | |||
1439 | } | |||
1440 | ||||
1441 | if (type == FLAG_REQUIRE32) { | |||
1442 | ||||
1443 | if (value == NULL((void*)0)) { | |||
1444 | if (flist->value == NULL((void*)0)) { | |||
1445 | return FAIL0; | |||
1446 | } else { | |||
1447 | return SUCCEED1; | |||
1448 | } | |||
1449 | } else { | |||
1450 | if (flist->value == NULL((void*)0)) { | |||
1451 | return FAIL0; | |||
1452 | } | |||
1453 | if (strcmp(value, flist->value) != 0) { | |||
1454 | return FAIL0; | |||
1455 | } else { | |||
1456 | if (flist->neg == 1) { | |||
1457 | return FAIL0; | |||
1458 | } | |||
1459 | return SUCCEED1; | |||
1460 | } | |||
1461 | } | |||
1462 | } | |||
1463 | ||||
1464 | if (type == FLAG_EQUAL64) { | |||
1465 | for (flist2 = h->flag_list; flist2 != NULL((void*)0); flist2 = flist2->next) { | |||
1466 | if (strcmp(flist2->name, value) == 0) { | |||
1467 | break; | |||
1468 | } | |||
1469 | } | |||
1470 | ||||
1471 | if (flist2 == NULL((void*)0) && flist->value != NULL((void*)0)) | |||
1472 | return FAIL0; | |||
1473 | if (flist2 == NULL((void*)0) && flist->value == NULL((void*)0)) { | |||
1474 | return SUCCEED1; | |||
1475 | } | |||
1476 | if (flist2->value == NULL((void*)0) || flist->value == NULL((void*)0)) { | |||
1477 | if (flist2->value == NULL((void*)0) && flist->value == NULL((void*)0) && flist->neg == flist2->neg) { | |||
1478 | return SUCCEED1; | |||
1479 | } else { | |||
1480 | return FAIL0; | |||
1481 | } | |||
1482 | } else if (strcmp(flist2->value, flist->value) == 0 && flist->neg == flist2->neg) { | |||
1483 | return SUCCEED1; | |||
1484 | } | |||
1485 | return FAIL0; | |||
1486 | } | |||
1487 | fprintf(stderrstderr,"***Don't know what do with flag [%i][%s][%s]\n", type, name, value); | |||
1488 | return FAIL0; | |||
1489 | } |