| File: | structures.c |
| Warning: | line 745, column 21 Result of 'calloc' is converted to a pointer of type 'short', which is incompatible with sizeof operand type 'int' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* Foma: a finite-state toolkit and library. */ |
| 2 | /* Copyright © 2008-2021 Mans Hulden */ |
| 3 | |
| 4 | /* This file is part of foma. */ |
| 5 | |
| 6 | /* Licensed under the Apache License, Version 2.0 (the "License"); */ |
| 7 | /* you may not use this file except in compliance with the License. */ |
| 8 | /* You may obtain a copy of the License at */ |
| 9 | |
| 10 | /* http://www.apache.org/licenses/LICENSE-2.0 */ |
| 11 | |
| 12 | /* Unless required by applicable law or agreed to in writing, software */ |
| 13 | /* distributed under the License is distributed on an "AS IS" BASIS, */ |
| 14 | /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ |
| 15 | /* See the License for the specific language governing permissions and */ |
| 16 | /* limitations under the License. */ |
| 17 | |
| 18 | #include <stdio.h> |
| 19 | #include <string.h> |
| 20 | #include <stdlib.h> |
| 21 | #include "foma.h" |
| 22 | |
| 23 | static struct defined_quantifiers *quantifiers; |
| 24 | struct _fsm_options fsm_options; |
| 25 | |
| 26 | char *fsm_get_library_version_string() { |
| 27 | static char s[20]; |
| 28 | sprintf(s,"%i.%i.%i%s",MAJOR_VERSION0,MINOR_VERSION10,BUILD_VERSION0,STATUS_VERSION"alpha"); |
| 29 | return(s); |
| 30 | } |
| 31 | |
| 32 | _Bool fsm_set_option(unsigned long long option, void *value) { |
| 33 | switch (option) { |
| 34 | case FSMO_SKIP_WORD_BOUNDARY_MARKER: |
| 35 | fsm_options.skip_word_boundary_marker = *((_Bool*)value); |
| 36 | return 1; |
| 37 | } |
| 38 | return 0; |
| 39 | } |
| 40 | |
| 41 | void *fsm_get_option(unsigned long long option) { |
| 42 | switch (option) { |
| 43 | case FSMO_SKIP_WORD_BOUNDARY_MARKER: |
| 44 | return &fsm_options.skip_word_boundary_marker; |
| 45 | } |
| 46 | return NULL((void*)0); |
| 47 | } |
| 48 | |
| 49 | int linesortcompin(struct fsm_state *a, struct fsm_state *b) { |
| 50 | return (a->in - b->in); |
| 51 | } |
| 52 | |
| 53 | int linesortcompout(struct fsm_state *a, struct fsm_state *b) { |
| 54 | return (a->out - b->out); |
| 55 | } |
| 56 | |
| 57 | void fsm_sort_arcs(struct fsm *net, int direction) { |
| 58 | /* direction 1 = in, direction = 2, out */ |
| 59 | struct fsm_state *fsm; |
| 60 | int i, lasthead, numlines; |
| 61 | int(*scin)() = linesortcompin; |
| 62 | int(*scout)() = linesortcompout; |
| 63 | fsm = net->states; |
| 64 | for (i=0, numlines = 0, lasthead = 0 ; (fsm+i)->state_no != -1; i++) { |
| 65 | if ((fsm+i)->state_no != (fsm+i+1)->state_no || (fsm+i)->target == -1) { |
| 66 | numlines++; |
| 67 | if ((fsm+i)->target == -1) { |
| 68 | numlines--; |
| 69 | } |
| 70 | if (numlines > 1) { |
| 71 | /* Sort, set numlines = 0 */ |
| 72 | if (direction == 1) |
| 73 | qsort(fsm+lasthead, numlines, sizeof(struct fsm_state), scin); |
| 74 | else |
| 75 | qsort(fsm+lasthead, numlines, sizeof(struct fsm_state), scout); |
| 76 | } |
| 77 | numlines = 0; |
| 78 | lasthead = i + 1; |
| 79 | continue; |
| 80 | } |
| 81 | numlines++; |
| 82 | } |
| 83 | if (net->arity == 1) { |
| 84 | net->arcs_sorted_in = 1; |
| 85 | net->arcs_sorted_out = 1; |
| 86 | return; |
| 87 | } |
| 88 | if (direction == 1) { |
| 89 | net->arcs_sorted_in = 1; |
| 90 | net->arcs_sorted_out = 0; |
| 91 | } |
| 92 | if (direction == 2) { |
| 93 | net->arcs_sorted_out = 1; |
| 94 | net->arcs_sorted_in = 0; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | struct state_array *map_firstlines(struct fsm *net) { |
| 99 | struct fsm_state *fsm; |
| 100 | struct state_array *sa; |
| 101 | int i, sold; |
| 102 | sold = -1; |
| 103 | sa = malloc(sizeof(struct state_array)*((net->statecount)+1)); |
| 104 | fsm = net->states; |
| 105 | for (i=0; (fsm+i)->state_no != -1; i++) { |
| 106 | if ((fsm+i)->state_no != sold) { |
| 107 | (sa+((fsm+i)->state_no))->transitions = fsm+i; |
| 108 | sold = (fsm+i)->state_no; |
| 109 | } |
| 110 | } |
| 111 | return(sa); |
| 112 | } |
| 113 | |
| 114 | struct fsm *fsm_boolean(int value) { |
| 115 | if (value == 0) |
| 116 | return (fsm_empty_set()); |
| 117 | else |
| 118 | return(fsm_empty_string()); |
| 119 | } |
| 120 | |
| 121 | struct fsm *fsm_sigma_net(struct fsm *net) { |
| 122 | /* Extract sigma and create net with one arc */ |
| 123 | /* from state 0 to state 1 with each (state 1 is final) */ |
| 124 | struct sigma *sig; |
| 125 | int pathcount; |
| 126 | |
| 127 | if (sigma_size(net->sigma) == 0) { |
| 128 | fsm_destroy(net); |
| 129 | return(fsm_empty_set()); |
| 130 | } |
| 131 | |
| 132 | fsm_state_init(sigma_max(net->sigma)); |
| 133 | fsm_state_set_current_state(0, 0, 1); |
| 134 | pathcount = 0; |
| 135 | for (sig = net->sigma; sig != NULL((void*)0); sig = sig->next) { |
| 136 | if (sig->number >=3 || sig->number == IDENTITY2) { |
| 137 | pathcount++; |
| 138 | fsm_state_add_arc(0,sig->number, sig->number, 1, 0, 1); |
| 139 | } |
| 140 | } |
| 141 | fsm_state_end_state(); |
| 142 | fsm_state_set_current_state(1, 1, 0); |
| 143 | fsm_state_end_state(); |
| 144 | free(net->states); |
| 145 | fsm_state_close(net); |
| 146 | net->is_minimized = YES1; |
| 147 | net->is_loop_free = YES1; |
| 148 | net->pathcount = pathcount; |
| 149 | sigma_cleanup(net, 1); |
| 150 | return(net); |
| 151 | } |
| 152 | |
| 153 | struct fsm *fsm_sigma_pairs_net(struct fsm *net) { |
| 154 | /* Create FSM of attested pairs */ |
| 155 | struct fsm_state *fsm; |
| 156 | char *pairs; |
| 157 | short int in, out; |
| 158 | int i, pathcount, smax; |
| 159 | |
| 160 | smax = sigma_max(net->sigma)+1; |
| 161 | pairs = calloc(smax*smax, sizeof(char)); |
| 162 | |
| 163 | fsm_state_init(sigma_max(net->sigma)); |
| 164 | fsm_state_set_current_state(0, 0, 1); |
| 165 | pathcount = 0; |
| 166 | for (fsm = net->states, i=0; (fsm+i)->state_no != -1; i++) { |
| 167 | if ((fsm+i)->target == -1) |
| 168 | continue; |
| 169 | in = (fsm+i)->in; |
| 170 | out = (fsm+i)->out; |
| 171 | if (*(pairs+smax*in+out) == 0) { |
| 172 | fsm_state_add_arc(0,in,out, 1, 0, 1); |
| 173 | *(pairs+smax*in+out) = 1; |
| 174 | pathcount++; |
| 175 | } |
| 176 | } |
| 177 | fsm_state_end_state(); |
| 178 | fsm_state_set_current_state(1, 1, 0); |
| 179 | fsm_state_end_state(); |
| 180 | |
| 181 | free(pairs); |
| 182 | free(net->states); |
| 183 | |
| 184 | fsm_state_close(net); |
| 185 | if (pathcount == 0) { |
| 186 | fsm_destroy(net); |
| 187 | return(fsm_empty_set()); |
| 188 | } |
| 189 | net->is_minimized = YES1; |
| 190 | net->is_loop_free = YES1; |
| 191 | net->pathcount = pathcount; |
| 192 | sigma_cleanup(net, 1); |
| 193 | return(net); |
| 194 | } |
| 195 | |
| 196 | int fsm_sigma_destroy(struct sigma *sigma) { |
| 197 | struct sigma *sig, *sigp; |
| 198 | for (sig = sigma, sigp = NULL((void*)0); sig != NULL((void*)0); sig = sigp) { |
| 199 | sigp = sig->next; |
| 200 | if (sig->symbol != NULL((void*)0)) { |
| 201 | free(sig->symbol); |
| 202 | sig->symbol = NULL((void*)0); |
| 203 | } |
| 204 | free(sig); |
| 205 | } |
| 206 | return 1; |
| 207 | } |
| 208 | |
| 209 | int fsm_destroy(struct fsm *net) { |
| 210 | if (net == NULL((void*)0)) { |
| 211 | return 0; |
| 212 | } |
| 213 | if (net->medlookup != NULL((void*)0) && net->medlookup->confusion_matrix != NULL((void*)0)) { |
| 214 | free(net->medlookup->confusion_matrix); |
| 215 | net->medlookup->confusion_matrix = NULL((void*)0); |
| 216 | } |
| 217 | if (net->medlookup != NULL((void*)0)) { |
| 218 | free(net->medlookup); |
| 219 | net->medlookup = NULL((void*)0); |
| 220 | } |
| 221 | fsm_sigma_destroy(net->sigma); |
| 222 | net->sigma = NULL((void*)0); |
| 223 | if (net->states != NULL((void*)0)) { |
| 224 | free(net->states); |
| 225 | net->states = NULL((void*)0); |
| 226 | } |
| 227 | free(net); |
| 228 | return(1); |
| 229 | } |
| 230 | |
| 231 | struct fsm *fsm_create (char *name) { |
| 232 | if (strlen(name) > FSM_NAME_LEN40) { |
| 233 | printf("Network name '%s' should consist of at most %d characters.\n", name, FSM_NAME_LEN40); |
| 234 | } |
| 235 | struct fsm *fsm; |
| 236 | fsm = malloc(sizeof(struct fsm)); |
| 237 | strncpy(fsm->name, name, FSM_NAME_LEN40); |
| 238 | fsm->arity = 1; |
| 239 | fsm->arccount = 0; |
| 240 | fsm->is_deterministic = NO0; |
| 241 | fsm->is_pruned = NO0; |
| 242 | fsm->is_minimized = NO0; |
| 243 | fsm->is_epsilon_free = NO0; |
| 244 | fsm->is_loop_free = NO0; |
| 245 | fsm->arcs_sorted_in = NO0; |
| 246 | fsm->arcs_sorted_out = NO0; |
| 247 | fsm->sigma = sigma_create(); |
| 248 | fsm->states = NULL((void*)0); |
| 249 | fsm->medlookup = NULL((void*)0); |
| 250 | return(fsm); |
| 251 | } |
| 252 | |
| 253 | struct fsm *fsm_empty_string() { |
| 254 | struct fsm *net; |
| 255 | net = fsm_create(""); |
| 256 | net->states = malloc(sizeof(struct fsm_state)*2); |
| 257 | add_fsm_arc(net->states, 0, 0, -1, -1, -1, 1, 1); |
| 258 | add_fsm_arc(net->states, 1, -1, -1, -1, -1, -1, -1); |
| 259 | fsm_update_flags(net,YES1,YES1,YES1,YES1,YES1,NO0); |
| 260 | net->statecount = 1; |
| 261 | net->finalcount = 1; |
| 262 | net->arccount = 0; |
| 263 | net->linecount = 2; |
| 264 | net->pathcount = 1; |
| 265 | return(net); |
| 266 | } |
| 267 | |
| 268 | struct fsm *fsm_identity() { |
| 269 | struct fsm *net; |
| 270 | struct sigma *sigma; |
| 271 | net = fsm_create(""); |
| 272 | free(net->sigma); |
| 273 | net->states = malloc(sizeof(struct fsm_state)*3); |
| 274 | add_fsm_arc(net->states, 0, 0, 2, 2, 1, 0, 1); |
| 275 | add_fsm_arc(net->states, 1, 1, -1, -1, -1, 1, 0); |
| 276 | add_fsm_arc(net->states, 2, -1, -1, -1, -1, -1, -1); |
| 277 | sigma = malloc(sizeof(struct sigma)); |
| 278 | sigma->number = IDENTITY2; |
| 279 | sigma->symbol = strdup("@_IDENTITY_SYMBOL_@"); |
| 280 | sigma->next = NULL((void*)0); |
| 281 | net->sigma = sigma; |
| 282 | fsm_update_flags(net,YES1,YES1,YES1,YES1,YES1,NO0); |
| 283 | net->statecount = 2; |
| 284 | net->finalcount = 1; |
| 285 | net->arccount = 1; |
| 286 | net->linecount = 3; |
| 287 | net->pathcount = 1; |
| 288 | return(net); |
| 289 | } |
| 290 | |
| 291 | struct fsm *fsm_empty_set() { |
| 292 | struct fsm *net; |
| 293 | net = fsm_create(""); |
| 294 | net->states = fsm_empty(); |
| 295 | fsm_update_flags(net,YES1,YES1,YES1,YES1,YES1,NO0); |
| 296 | net->statecount = 1; |
| 297 | net->finalcount = 0; |
| 298 | net->arccount = 0; |
| 299 | net->linecount = 2; |
| 300 | net->pathcount = 0; |
| 301 | return(net); |
| 302 | } |
| 303 | |
| 304 | struct fsm_state *fsm_empty() { |
| 305 | struct fsm_state *new_fsm; |
| 306 | new_fsm = malloc(sizeof(struct fsm_state)*2); |
| 307 | add_fsm_arc(new_fsm, 0, 0, -1, -1, -1, 0, 1); |
| 308 | add_fsm_arc(new_fsm, 1, -1, -1, -1, -1, -1, -1); |
| 309 | return(new_fsm); |
| 310 | } |
| 311 | |
| 312 | int fsm_isuniversal(struct fsm *net) { |
| 313 | struct fsm_state *fsm; |
| 314 | net = fsm_minimize(net); |
| 315 | fsm_compact(net); |
| 316 | fsm = net->states; |
| 317 | if ((fsm->target == 0 && fsm->final_state == 1 && (fsm+1)->state_no == 0) && |
| 318 | (fsm->in == IDENTITY2 && fsm->out == IDENTITY2) && |
| 319 | ((fsm+1)->state_no == -1) && |
| 320 | (sigma_max(net->sigma)<3) ) { |
| 321 | return 1; |
| 322 | } else { |
| 323 | return 0; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | int fsm_isempty(struct fsm *net) { |
| 328 | int result; |
| 329 | struct fsm *minimal = fsm_minimize(fsm_copy(net)); |
| 330 | struct fsm_state *fsm = minimal->states; |
| 331 | if (fsm->target == -1 && fsm->final_state == 0 && (fsm+1)->state_no == -1) |
| 332 | result = 1; |
| 333 | else |
| 334 | result = 0; |
| 335 | fsm_destroy(minimal); |
| 336 | return result; |
| 337 | } |
| 338 | |
| 339 | int fsm_issequential(struct fsm *net) { |
| 340 | int i, *sigtable, sequential, seentrans, epstrans, laststate, insym; |
| 341 | struct fsm_state *fsm; |
| 342 | sigtable = calloc(sigma_max(net->sigma)+1,sizeof(int)); |
| 343 | for (i = 0 ; i < sigma_max(net->sigma)+1; i++) { |
| 344 | sigtable[i] = -2; |
| 345 | } |
| 346 | fsm = net->states; |
| 347 | seentrans = epstrans = 0; |
| 348 | laststate = -1; |
| 349 | for (sequential = 1, i = 0; (fsm+i)->state_no != -1 ; i++) { |
| 350 | insym = (fsm+i)->in; |
| 351 | if (insym < 0) { |
| 352 | continue; |
| 353 | } |
| 354 | if ((fsm+i)->state_no != laststate) { |
| 355 | laststate = (fsm+i)->state_no; |
| 356 | epstrans = 0; |
| 357 | seentrans = 0; |
| 358 | } |
| 359 | if (*(sigtable+insym) == laststate || epstrans == 1) { |
| 360 | sequential = 0; |
| 361 | break; |
| 362 | } |
| 363 | if (insym == EPSILON0) { |
| 364 | if (epstrans == 1 || seentrans == 1) { |
| 365 | sequential = 0; |
| 366 | break; |
| 367 | } |
| 368 | epstrans = 1; |
| 369 | } |
| 370 | *(sigtable+insym) = laststate; |
| 371 | seentrans = 1; |
| 372 | } |
| 373 | free(sigtable); |
| 374 | if (!sequential) |
| 375 | printf("fails at state %i\n",(fsm+i)->state_no); |
| 376 | return(sequential); |
| 377 | } |
| 378 | |
| 379 | int fsm_isfunctional(struct fsm *net) { |
| 380 | struct fsm *tmp = fsm_minimize(fsm_compose(fsm_invert(fsm_copy(net)),fsm_copy(net))); |
| 381 | int result = fsm_isidentity(tmp); |
| 382 | fsm_destroy(tmp); |
| 383 | return result; |
| 384 | } |
| 385 | |
| 386 | int fsm_isunambiguous(struct fsm *net) { |
| 387 | struct fsm *loweruniqnet, *testnet; |
| 388 | int ret; |
| 389 | loweruniqnet = fsm_lowerdet(fsm_copy(net)); |
| 390 | testnet = fsm_minimize(fsm_compose(fsm_invert(fsm_copy(loweruniqnet)),fsm_copy(loweruniqnet))); |
| 391 | ret = fsm_isidentity(testnet); |
| 392 | fsm_destroy(loweruniqnet); |
| 393 | fsm_destroy(testnet); |
| 394 | return(ret); |
| 395 | } |
| 396 | |
| 397 | struct fsm *fsm_extract_ambiguous_domain(struct fsm *net) { |
| 398 | // define AmbiguousDom(T) [_loweruniq(T) .o. _notid(_loweruniq(T).i .o. _loweruniq(T))].u; |
| 399 | struct fsm *loweruniqnet, *result; |
| 400 | loweruniqnet = fsm_lowerdet(net); |
| 401 | result = fsm_topsort(fsm_minimize(fsm_upper(fsm_compose(fsm_copy(loweruniqnet),fsm_extract_nonidentity(fsm_compose(fsm_invert(fsm_copy(loweruniqnet)), fsm_copy(loweruniqnet))))))); |
| 402 | fsm_destroy(loweruniqnet); |
| 403 | sigma_cleanup(result,1); |
| 404 | fsm_compact(result); |
| 405 | sigma_sort(result); |
| 406 | return(result); |
| 407 | } |
| 408 | |
| 409 | struct fsm *fsm_extract_ambiguous(struct fsm *net) { |
| 410 | struct fsm *result; |
| 411 | result = fsm_topsort(fsm_minimize(fsm_compose(fsm_extract_ambiguous_domain(fsm_copy(net)), net))); |
| 412 | return(result); |
| 413 | } |
| 414 | |
| 415 | struct fsm *fsm_extract_unambiguous(struct fsm *net) { |
| 416 | struct fsm *result; |
| 417 | result = fsm_topsort(fsm_minimize(fsm_compose(fsm_complement(fsm_extract_ambiguous_domain(fsm_copy(net))), net))); |
| 418 | return(result); |
| 419 | } |
| 420 | |
| 421 | int fsm_isidentity(struct fsm *net) { |
| 422 | |
| 423 | /* We check whether a given transducer only produces identity relations */ |
| 424 | /* By doing a DFS on the graph, and storing, for each state a "discrepancy" */ |
| 425 | /* string, showing the current "debt" on the upper or lower side. */ |
| 426 | /* We immediately fail if: */ |
| 427 | /* a) we encounter an already seen state with a different current */ |
| 428 | /* discrepancy than what is stored in the state. */ |
| 429 | /* b) when traversing an arc, we encounter a mismatch between the arc and */ |
| 430 | /* the current discrepancy. */ |
| 431 | /* c) we encounter a final state and have a non-null current discrepancy. */ |
| 432 | /* d) we encounter @ with a non-null discrepancy anywhere. */ |
| 433 | /* e) we encounter ? anywhere. */ |
| 434 | |
| 435 | struct discrepancy { |
| 436 | short int *string; |
| 437 | short int length; |
| 438 | _Bool visited; |
| 439 | }; |
| 440 | |
| 441 | struct state_array *state_array; |
| 442 | struct fsm_state *curr_ptr; |
| 443 | int i, j, v, vp, num_states, factor = 0, newlength = 1, startfrom; |
| 444 | short int in, out, *newstring = NULL((void*)0); |
| 445 | struct discrepancy *discrepancy, *currd, *targetd; |
| 446 | struct fsm *tmp; |
| 447 | |
| 448 | tmp = fsm_minimize(fsm_copy(net)); |
| 449 | fsm_count(tmp); |
| 450 | |
| 451 | num_states = tmp->statecount; |
| 452 | discrepancy = calloc(num_states,sizeof(struct discrepancy)); |
| 453 | state_array = map_firstlines(tmp); |
| 454 | ptr_stack_clear(); |
| 455 | ptr_stack_push(state_array->transitions); |
| 456 | |
| 457 | while(!ptr_stack_isempty()) { |
| 458 | |
| 459 | curr_ptr = ptr_stack_pop(); |
| 460 | |
| 461 | nopop: |
| 462 | v = curr_ptr->state_no; /* source state number */ |
| 463 | vp = curr_ptr->target; /* target state number */ |
| 464 | currd = discrepancy+v; |
| 465 | if (v != -1) |
| 466 | currd->visited = 1; |
| 467 | if (v == -1 || vp == -1) |
| 468 | continue; |
| 469 | in = curr_ptr->in; |
| 470 | out = curr_ptr->out; |
| 471 | |
| 472 | targetd = discrepancy+vp; |
| 473 | /* Check arc and conditions e) d) b) */ |
| 474 | /* e) */ |
| 475 | if (in == UNKNOWN1 || out == UNKNOWN1) |
| 476 | goto fail; |
| 477 | /* d) */ |
| 478 | if (in == IDENTITY2 && currd->length != 0) |
| 479 | goto fail; |
| 480 | /* b) */ |
| 481 | if (currd->length != 0) { |
| 482 | if (currd->length > 0 && out != EPSILON0 && out != *(currd->string)) |
| 483 | goto fail; |
| 484 | if (currd->length < 0 && in != EPSILON0 && in != *(currd->string)) |
| 485 | goto fail; |
| 486 | } |
| 487 | if (currd->length == 0 && in != out && in != EPSILON0 && out != EPSILON0) { |
| 488 | goto fail; |
| 489 | } |
| 490 | |
| 491 | /* Calculate new discrepancy */ |
| 492 | if (currd->length != 0) { |
| 493 | if (in != EPSILON0 && out != EPSILON0) |
| 494 | factor = 0; |
| 495 | else if (in == EPSILON0) |
| 496 | factor = -1; |
| 497 | else if (out == EPSILON0) |
| 498 | factor = 1; |
| 499 | |
| 500 | newlength = currd->length + factor; |
| 501 | startfrom = (abs(newlength) <= abs(currd->length)) ? 1 : 0; |
| 502 | |
| 503 | } else if (currd->length == 0) { |
| 504 | if (in != EPSILON0 && out != EPSILON0) { |
| 505 | newlength = 0; |
| 506 | } else { |
| 507 | newlength = (out == EPSILON0) ? 1 : -1; |
| 508 | } |
| 509 | startfrom = 0; |
| 510 | } |
| 511 | |
| 512 | if (newstring != NULL((void*)0)) { |
| 513 | free(newstring); |
| 514 | newstring = NULL((void*)0); |
| 515 | } |
| 516 | newstring = calloc(abs(newlength),sizeof(int)); |
| 517 | |
| 518 | for (i = startfrom, j = 0; i < abs(currd->length); i++, j++) { |
| 519 | *(newstring+j) = *((currd->string)+i); |
| 520 | } |
| 521 | if (newlength != 0) { |
| 522 | if (currd->length > 0 && newlength >= currd->length) { |
| 523 | *(newstring+j) = in; |
| 524 | } |
| 525 | if (currd->length < 0 && newlength <= currd->length) { |
| 526 | *(newstring+j) = out; |
| 527 | } |
| 528 | if (currd->length == 0 && newlength < currd->length) { |
| 529 | *(newstring+j) = out; |
| 530 | } |
| 531 | if (currd->length == 0 && newlength > currd->length) { |
| 532 | *(newstring+j) = in; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | /* Check target conditions a) c) */ |
| 537 | /* a) */ |
| 538 | if (((state_array+vp)->transitions)->final_state && newlength != 0) |
| 539 | goto fail; |
| 540 | if (curr_ptr->state_no == (curr_ptr+1)->state_no) { |
| 541 | ptr_stack_push(curr_ptr+1); |
| 542 | } |
| 543 | if ((discrepancy+vp)->visited) { |
| 544 | //free(newstring); |
| 545 | if (targetd->length != newlength) |
| 546 | goto fail; |
| 547 | for (i=0 ; i < abs(newlength); i++) { |
| 548 | if (*((targetd->string)+i) != *(newstring+i)) |
| 549 | goto fail; |
| 550 | } |
| 551 | } else { |
| 552 | /* Add discrepancy to target state */ |
| 553 | targetd->length = newlength; |
| 554 | targetd->string = newstring; |
| 555 | curr_ptr = (state_array+vp)->transitions; |
| 556 | goto nopop; |
| 557 | } |
| 558 | } |
| 559 | free(state_array); |
| 560 | free(discrepancy); |
| 561 | fsm_destroy(tmp); |
| 562 | if (newstring != NULL((void*)0)) |
| 563 | free(newstring); |
| 564 | return 1; |
| 565 | fail: |
| 566 | free(state_array); |
| 567 | free(discrepancy); |
| 568 | ptr_stack_clear(); |
| 569 | fsm_destroy(tmp); |
| 570 | if (newstring != NULL((void*)0)) |
| 571 | free(newstring); |
| 572 | return 0; |
| 573 | } |
| 574 | |
| 575 | struct fsm *fsm_markallfinal(struct fsm *net) { |
| 576 | struct fsm_state *fsm; |
| 577 | int i; |
| 578 | fsm = net->states; |
| 579 | for (i=0; (fsm+i)->state_no != -1; i++) { |
| 580 | (fsm+i)->final_state = YES1; |
| 581 | } |
| 582 | return net; |
| 583 | } |
| 584 | |
| 585 | struct fsm *fsm_lowerdet(struct fsm *net) { |
| 586 | unsigned int newsym; /* Running number for new syms */ |
| 587 | struct fsm_state *fsm; |
| 588 | char repstr[13]; |
| 589 | int i,j,maxsigma,maxarc; |
| 590 | net = fsm_minimize(net); |
| 591 | fsm_count(net); |
| 592 | newsym = 8723643; |
| 593 | fsm = net->states; |
| 594 | maxarc = 0; |
| 595 | maxsigma = sigma_max(net->sigma); |
| 596 | |
| 597 | for (i=0, j=0; (fsm+i)->state_no != -1; i++) { |
| 598 | if ((fsm+i)->target != -1) |
| 599 | j++; |
| 600 | if ((fsm+i+1)->state_no != (fsm+i)->state_no) { |
| 601 | maxarc = maxarc > j ? maxarc : j; |
| 602 | j = 0; |
| 603 | } |
| 604 | } |
| 605 | if (maxarc > (maxsigma-2)) { |
| 606 | for (i=maxarc; i > (maxsigma-2); i--) { |
| 607 | sprintf(repstr,"%012X",newsym++); |
| 608 | sigma_add(repstr, net->sigma); |
| 609 | } |
| 610 | sigma_sort(net); |
| 611 | } |
| 612 | for (i=0, j=3; (fsm+i)->state_no != -1; i++) { |
| 613 | if ((fsm+i)->target != -1) { |
| 614 | (fsm+i)->out = j++; |
| 615 | (fsm+i)->in = ((fsm+i)->in == IDENTITY2) ? UNKNOWN1 : (fsm+i)->in; |
| 616 | } |
| 617 | if ((fsm+i+1)->state_no != (fsm+i)->state_no) { |
| 618 | j = 3; |
| 619 | } |
| 620 | } |
| 621 | return(net); |
| 622 | } |
| 623 | |
| 624 | struct fsm *fsm_lowerdeteps(struct fsm *net) { |
| 625 | unsigned int newsym; /* Running number for new syms */ |
| 626 | struct fsm_state *fsm; |
| 627 | char repstr[13]; |
| 628 | int i,j,maxsigma,maxarc; |
| 629 | net = fsm_minimize(net); |
| 630 | fsm_count(net); |
| 631 | newsym = 8723643; |
| 632 | fsm = net->states; |
| 633 | maxarc = 0; |
| 634 | maxsigma = sigma_max(net->sigma); |
| 635 | |
| 636 | for (i=0, j=0; (fsm+i)->state_no != -1; i++) { |
| 637 | if ((fsm+i)->target != -1) |
| 638 | j++; |
| 639 | if ((fsm+i+1)->state_no != (fsm+i)->state_no) { |
| 640 | maxarc = maxarc > j ? maxarc : j; |
| 641 | j = 0; |
| 642 | } |
| 643 | } |
| 644 | if (maxarc > (maxsigma-2)) { |
| 645 | for (i=maxarc; i > (maxsigma-2); i--) { |
| 646 | sprintf(repstr,"%012X",newsym++); |
| 647 | sigma_add(repstr, net->sigma); |
| 648 | } |
| 649 | sigma_sort(net); |
| 650 | } |
| 651 | for (i=0, j=3; (fsm+i)->state_no != -1; i++) { |
| 652 | if ((fsm+i)->target != -1 && (fsm+i)->out != EPSILON0) { |
| 653 | (fsm+i)->out = j++; |
| 654 | (fsm+i)->in = ((fsm+i)->in == IDENTITY2) ? UNKNOWN1 : (fsm+i)->in; |
| 655 | } |
| 656 | if ((fsm+i+1)->state_no != (fsm+i)->state_no) { |
| 657 | j = 3; |
| 658 | } |
| 659 | } |
| 660 | return(net); |
| 661 | } |
| 662 | |
| 663 | struct fsm *fsm_extract_nonidentity(struct fsm *net) { |
| 664 | |
| 665 | /* Same algorithm as for test identity, except we mark the arcs that cause nonidentity */ |
| 666 | /* Experimental. */ |
| 667 | |
| 668 | struct discrepancy { |
| 669 | short int *string; |
| 670 | short int length; |
| 671 | _Bool visited; |
| 672 | }; |
| 673 | |
| 674 | struct state_array *state_array; |
| 675 | struct fsm_state *curr_ptr; |
| 676 | struct fsm *net2; |
| 677 | int i, j, v, vp, num_states, factor = 0, newlength = 1, startfrom, killnum; |
| 678 | short int in, out, *newstring; |
| 679 | struct discrepancy *discrepancy, *currd, *targetd; |
| 680 | |
| 681 | fsm_minimize(net); |
| 682 | fsm_count(net); |
| 683 | killnum = sigma_add("@KILL@", net->sigma); |
| 684 | |
| 685 | num_states = net->statecount; |
| 686 | discrepancy = calloc(num_states,sizeof(struct discrepancy)); |
| 687 | state_array = map_firstlines(net); |
| 688 | ptr_stack_push(state_array->transitions); |
| 689 | |
| 690 | while(!ptr_stack_isempty()) { |
| 691 | |
| 692 | curr_ptr = ptr_stack_pop(); |
| 693 | |
| 694 | nopop: |
| 695 | v = curr_ptr->state_no; /* source state number */ |
| 696 | vp = curr_ptr->target; /* target state number */ |
| 697 | currd = discrepancy+v; |
| 698 | if (v != -1) |
| 699 | currd->visited = 1; |
| 700 | if (v == -1 || vp == -1) |
| 701 | continue; |
| 702 | in = curr_ptr->in; |
| 703 | out = curr_ptr->out; |
| 704 | |
| 705 | targetd = discrepancy+vp; |
| 706 | /* Check arc and conditions e) d) b) */ |
| 707 | /* e) */ |
| 708 | if (in == UNKNOWN1 || out == UNKNOWN1) |
| 709 | goto fail; |
| 710 | /* d) */ |
| 711 | if (in == IDENTITY2 && currd->length != 0) |
| 712 | goto fail; |
| 713 | /* b) */ |
| 714 | if (currd->length != 0) { |
| 715 | if (currd->length > 0 && out != EPSILON0 && out != *(currd->string)) |
| 716 | goto fail; |
| 717 | if (currd->length < 0 && in != EPSILON0 && in != *(currd->string)) |
| 718 | goto fail; |
| 719 | } |
| 720 | if (currd->length == 0 && in != out && in != EPSILON0 && out != EPSILON0) { |
| 721 | goto fail; |
| 722 | } |
| 723 | |
| 724 | /* Calculate new discrepancy */ |
| 725 | if (currd->length != 0) { |
| 726 | if (in != EPSILON0 && out != EPSILON0) |
| 727 | factor = 0; |
| 728 | else if (in == EPSILON0) |
| 729 | factor = -1; |
| 730 | else if (out == EPSILON0) |
| 731 | factor = 1; |
| 732 | |
| 733 | newlength = currd->length + factor; |
| 734 | startfrom = (abs(newlength) <= abs(currd->length)) ? 1 : 0; |
| 735 | |
| 736 | } else if (currd->length == 0) { |
| 737 | if (in != EPSILON0 && out != EPSILON0) { |
| 738 | newlength = 0; |
| 739 | } else { |
| 740 | newlength = (out == EPSILON0) ? 1 : -1; |
| 741 | } |
| 742 | startfrom = 0; |
| 743 | } |
| 744 | |
| 745 | newstring = calloc(abs(newlength),sizeof(int)); |
Result of 'calloc' is converted to a pointer of type 'short', which is incompatible with sizeof operand type 'int' | |
| 746 | |
| 747 | for (i = startfrom, j = 0; i < abs(currd->length); i++, j++) { |
| 748 | *(newstring+j) = *((currd->string)+i); |
| 749 | } |
| 750 | if (newlength != 0) { |
| 751 | if (currd->length > 0 && newlength >= currd->length) { |
| 752 | *(newstring+j) = in; |
| 753 | } |
| 754 | if (currd->length < 0 && newlength <= currd->length) { |
| 755 | *(newstring+j) = out; |
| 756 | } |
| 757 | if (currd->length == 0 && newlength < currd->length) { |
| 758 | *(newstring+j) = out; |
| 759 | } |
| 760 | if (currd->length == 0 && newlength > currd->length) { |
| 761 | *(newstring+j) = in; |
| 762 | } |
| 763 | |
| 764 | } |
| 765 | |
| 766 | /* Check target conditions a) c) */ |
| 767 | /* a) */ |
| 768 | if (((state_array+vp)->transitions)->final_state && newlength != 0) |
| 769 | goto fail; |
| 770 | if (curr_ptr->state_no == (curr_ptr+1)->state_no) { |
| 771 | ptr_stack_push(curr_ptr+1); |
| 772 | } |
| 773 | |
| 774 | if ((discrepancy+vp)->visited) { |
| 775 | //free(newstring); |
| 776 | if (targetd->length != newlength) |
| 777 | goto fail; |
| 778 | for (i=0 ; i < abs(newlength); i++) { |
| 779 | if (*((targetd->string)+i) != *(newstring+i)) |
| 780 | goto fail; |
| 781 | } |
| 782 | } else { |
| 783 | /* Add discrepancy to target state */ |
| 784 | targetd->length = newlength; |
| 785 | targetd->string = newstring; |
| 786 | curr_ptr = (state_array+vp)->transitions; |
| 787 | goto nopop; |
| 788 | } |
| 789 | continue; |
| 790 | fail: |
| 791 | curr_ptr->out = killnum; |
| 792 | if (curr_ptr->state_no == (curr_ptr+1)->state_no) { |
| 793 | ptr_stack_push(curr_ptr+1); |
| 794 | } |
| 795 | } |
| 796 | ptr_stack_clear(); |
| 797 | sigma_sort(net); |
| 798 | net2 = fsm_upper(fsm_compose(net,fsm_contains(fsm_symbol("@KILL@")))); |
| 799 | sigma_remove("@KILL@",net2->sigma); |
| 800 | sigma_sort(net2); |
| 801 | free(state_array); |
| 802 | free(discrepancy); |
| 803 | return(net2); |
| 804 | } |
| 805 | |
| 806 | struct fsm *fsm_copy (struct fsm *net) { |
| 807 | struct fsm *net_copy; |
| 808 | if (net == NULL((void*)0)) |
| 809 | return net; |
| 810 | |
| 811 | net_copy = malloc(sizeof(struct fsm)); |
| 812 | memcpy(net_copy, net, sizeof(struct fsm)); |
| 813 | |
| 814 | fsm_count(net); |
| 815 | net_copy->sigma = sigma_copy(net->sigma); |
| 816 | net_copy->states = fsm_state_copy(net->states, net->linecount); |
| 817 | return(net_copy); |
| 818 | } |
| 819 | |
| 820 | struct fsm_state *fsm_state_copy(struct fsm_state *fsm_state, int linecount) { |
| 821 | struct fsm_state *new_fsm_state; |
| 822 | |
| 823 | new_fsm_state = malloc(sizeof(struct fsm_state)*(linecount)); |
| 824 | memcpy(new_fsm_state, fsm_state, linecount*sizeof(struct fsm_state)); |
| 825 | return(new_fsm_state); |
| 826 | } |
| 827 | |
| 828 | /* TODO: separate linecount and arccount */ |
| 829 | int find_arccount(struct fsm_state *fsm) { |
| 830 | int i; |
| 831 | for (i=0;(fsm+i)->state_no != -1; i++) { |
| 832 | } |
| 833 | return i; |
| 834 | } |
| 835 | |
| 836 | void clear_quantifiers() { |
| 837 | quantifiers = NULL((void*)0); |
| 838 | } |
| 839 | |
| 840 | int count_quantifiers() { |
| 841 | struct defined_quantifiers *q; |
| 842 | int i; |
| 843 | for (i = 0, q = quantifiers; q != NULL((void*)0); q = q->next) { |
| 844 | i++; |
| 845 | } |
| 846 | return(i); |
| 847 | } |
| 848 | |
| 849 | void add_quantifier (char *string) { |
| 850 | struct defined_quantifiers *q; |
| 851 | if (quantifiers == NULL((void*)0)) { |
| 852 | q = malloc(sizeof(struct defined_quantifiers)); |
| 853 | quantifiers = q; |
| 854 | } else { |
| 855 | for (q = quantifiers; q->next != NULL((void*)0); q = q->next) { |
| 856 | |
| 857 | } |
| 858 | q->next = malloc(sizeof(struct defined_quantifiers)); |
| 859 | q = q->next; |
| 860 | } |
| 861 | q->name = strdup(string); |
| 862 | q->next = NULL((void*)0); |
| 863 | } |
| 864 | |
| 865 | struct fsm *union_quantifiers() { |
| 866 | /* We create a FSM that simply accepts the union of all */ |
| 867 | /* quantifier symbols */ |
| 868 | |
| 869 | struct fsm *net; |
| 870 | struct defined_quantifiers *q; |
| 871 | int i, syms, s, symlo; |
| 872 | |
| 873 | net = fsm_create(""); |
| 874 | fsm_update_flags(net, YES1, YES1, YES1, YES1, NO0, NO0); |
| 875 | |
| 876 | for (syms = 0, symlo = 0, q = quantifiers; q != NULL((void*)0); q = q->next) { |
| 877 | s = sigma_add(q->name, net->sigma); |
| 878 | if (symlo == 0) { |
| 879 | symlo = s; |
| 880 | } |
| 881 | syms++; |
| 882 | } |
| 883 | net->states = malloc(sizeof(struct fsm_state)*(syms+1)); |
| 884 | for (i = 0; i < syms; i++) { |
| 885 | add_fsm_arc(net->states, i, 0, symlo+i, symlo+i, 0, 1, 1); |
| 886 | } |
| 887 | add_fsm_arc(net->states, i, -1, -1, -1, -1 ,-1 ,-1); |
| 888 | net->arccount = syms; |
| 889 | net->statecount = net->finalcount = 1; |
| 890 | net->linecount = syms; |
| 891 | return(net); |
| 892 | } |
| 893 | |
| 894 | char *find_quantifier (char *string) { |
| 895 | struct defined_quantifiers *q; |
| 896 | for (q = quantifiers; q != NULL((void*)0); q = q->next) { |
| 897 | if (strcmp(string,q->name) == 0) |
| 898 | return q->name; |
| 899 | } |
| 900 | return(NULL((void*)0)); |
| 901 | } |
| 902 | |
| 903 | void purge_quantifier (char *string) { |
| 904 | struct defined_quantifiers *q, *q_prev; |
| 905 | for (q = quantifiers, q_prev = NULL((void*)0); q != NULL((void*)0); q_prev = q, q = q->next) { |
| 906 | if (strcmp(string, q->name) == 0) { |
| 907 | if (q_prev != NULL((void*)0)) { |
| 908 | q_prev->next = q->next; |
| 909 | } else { |
| 910 | quantifiers = q->next; |
| 911 | } |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | struct fsm *fsm_quantifier(char *string) { |
| 917 | |
| 918 | /* \x* x \x* x \x* */ |
| 919 | return(fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol(string))),fsm_concat(fsm_symbol(string),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol(string))),fsm_concat(fsm_symbol(string),fsm_kleene_star(fsm_term_negation(fsm_symbol(string)))))))); |
| 920 | |
| 921 | } |
| 922 | |
| 923 | struct fsm *fsm_logical_precedence(char *string1, char *string2) { |
| 924 | /* x < y = \y* x \y* [x | y Q* x] ?* */ |
| 925 | /* 1 2 3 4 5 */ |
| 926 | |
| 927 | return(fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol(string2))),fsm_concat(fsm_symbol(string1),fsm_concat(fsm_kleene_star(fsm_term_negation(fsm_symbol(string2))),fsm_concat(fsm_union(fsm_symbol(string1),fsm_concat(fsm_symbol(string2),fsm_concat(union_quantifiers(),fsm_symbol(string1)))),fsm_universal()))))); |
| 928 | |
| 929 | /* 1,3 fsm_kleene_star(fsm_term_negation(fsm_symbol(string2))) */ |
| 930 | /* 2 = fsm_symbol(string1) */ |
| 931 | /* 5 = fsm_universal() */ |
| 932 | /* 4 = fsm_union(fsm_symbol(string1),fsm_concat(fsm_symbol(string2),fsm_concat(union_quantifiers(),fsm_symbol(string1)))) */ |
| 933 | |
| 934 | } |
| 935 | |
| 936 | /** Logical equivalence, i.e. where two variables span the same substring */ |
| 937 | /** x = y = ?* [x y|y x]/Q ?* [x y|y x]/Q ?* */ |
| 938 | struct fsm *fsm_logical_eq(char *string1, char *string2) { |
| 939 | return(fsm_concat(fsm_universal(),fsm_concat(fsm_ignore(fsm_union(fsm_concat(fsm_symbol(string1),fsm_symbol(string2)),fsm_concat(fsm_symbol(string2),fsm_symbol(string1))),union_quantifiers(),OP_IGNORE_ALL1),fsm_concat(fsm_universal(),fsm_concat(fsm_ignore(fsm_union(fsm_concat(fsm_symbol(string1),fsm_symbol(string2)),fsm_concat(fsm_symbol(string2),fsm_symbol(string1))),union_quantifiers(),OP_IGNORE_ALL1),fsm_universal()))))); |
| 940 | } |
| 941 |