File: | lexdcompiler.cc |
Warning: | line 2022, column 5 Value stored to 'did_anything' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include "lexdcompiler.h" |
2 | #include <unicode/unistr.h> |
3 | #include <memory> |
4 | #include <chrono> |
5 | #include <lttoolbox/string_utils.h> |
6 | |
7 | using namespace icu; |
8 | using namespace std; |
9 | |
10 | bool tag_filter_t::combinable(const tag_filter_t &other) const |
11 | { |
12 | // TODO: make ops combinable even with non-empty filters? |
13 | if(empty() || other.empty()) |
14 | return true; |
15 | return intersectset(pos(), other.neg()).empty() && intersectset(other.pos(), neg()).empty() && ops().empty() && other.ops().empty(); |
16 | } |
17 | bool tag_filter_t::combine(const tag_filter_t &other) |
18 | { |
19 | if(!combinable(other)) |
20 | return false; |
21 | unionset_inplace(_pos, other._pos); |
22 | unionset_inplace(_neg, other._neg); |
23 | for(const auto &op: other._ops) |
24 | _ops.push_back(op); |
25 | return true; |
26 | } |
27 | |
28 | void expand_alternation(vector<pattern_t> &pats, const vector<pattern_element_t> &alternation); |
29 | vector<pattern_element_t> distribute_tag_expressions(const pattern_element_t &token) |
30 | { |
31 | vector<pattern_element_t> result; |
32 | for(const auto &f: token.tag_filter.distribute()) |
33 | { |
34 | pattern_element_t new_token = token; |
35 | new_token.tag_filter = f; |
36 | result.push_back(new_token); |
37 | } |
38 | return result; |
39 | } |
40 | |
41 | bool tag_filter_t::compatible(const tags_t &tags) const |
42 | { |
43 | return subset(pos(), tags) && intersectset(neg(), tags).empty() && ops().empty(); |
44 | } |
45 | bool tag_filter_t::applicable(const tags_t &tags) const |
46 | { |
47 | return subset(neg(), tags) && ops().empty(); |
48 | } |
49 | bool tag_filter_t::try_apply(tags_t &tags) const |
50 | { |
51 | if(!applicable(tags)) |
52 | return false; |
53 | subtractset_inplace(tags, neg()); |
54 | unionset_inplace(tags, pos()); |
55 | return true; |
56 | } |
57 | bool pattern_element_t::compatible(const lex_seg_t &tok) const |
58 | { |
59 | return left.name.empty() || right.name.empty() || tag_filter.compatible(tok.tags); |
60 | } |
61 | const UnicodeString &LexdCompiler::name(string_ref r) const |
62 | { |
63 | return id_to_name[(unsigned int)r]; |
64 | } |
65 | |
66 | UnicodeString LexdCompiler::printPattern(const pattern_element_t& pat) |
67 | { |
68 | UnicodeString ret = name(pat.left.name); |
69 | auto& pos = pat.tag_filter.pos(); |
70 | auto& neg = pat.tag_filter.neg(); |
71 | if (!pos.empty() || !neg.empty()) { |
72 | ret += '['; |
73 | int ln = ret.length(); |
74 | for (auto& it : pos) { |
75 | if (ret.length() > ln) ret += ','; |
76 | ret += name(it); |
77 | } |
78 | for (auto& it : neg) { |
79 | if (ret.length() > ln) ret += ','; |
80 | ret += '-'; |
81 | ret += name(it); |
82 | } |
83 | ret += ']'; |
84 | } |
85 | switch (pat.mode) { |
86 | case Question: |
87 | ret += '?'; break; |
88 | case Plus: |
89 | ret += '+'; break; |
90 | case Star: |
91 | ret += '*'; break; |
92 | default: break; |
93 | } |
94 | return ret; |
95 | } |
96 | |
97 | UnicodeString LexdCompiler::printFilter(const tag_filter_t& filter) |
98 | { |
99 | UnicodeString ret; |
100 | ret += '['; |
101 | for (auto& it : filter.pos()) { |
102 | if (ret.length() > 1) ret += ','; |
103 | ret += name(it); |
104 | } |
105 | for (auto& it : filter.neg()) { |
106 | if (ret.length() > 1) ret += ','; |
107 | ret += '-'; |
108 | ret += name(it); |
109 | } |
110 | for (auto& op : filter.ops()) { |
111 | if (ret.length() > 1) ret += ','; |
112 | ret += op->sigil; |
113 | ret += '['; |
114 | int ln = ret.length(); |
115 | for (auto& it : *op) { |
116 | if (ret.length() > ln) ret += ','; |
117 | ret += name(it); |
118 | } |
119 | ret += ']'; |
120 | } |
121 | ret += ']'; |
122 | return ret; |
123 | } |
124 | |
125 | trans_sym_t LexdCompiler::alphabet_lookup(const UnicodeString &symbol) |
126 | { |
127 | if (!symbol.hasMoreChar32Than(0, symbol.length(), 1)) { |
128 | return trans_sym_t((int)symbol.char32At(0)); |
129 | } else { |
130 | UString temp; |
131 | temp.append(symbol.getBuffer(), (unsigned int)symbol.length()); |
132 | alphabet.includeSymbol(temp); |
133 | return trans_sym_t(alphabet(temp)); |
134 | } |
135 | } |
136 | trans_sym_t LexdCompiler::alphabet_lookup(trans_sym_t l, trans_sym_t r) |
137 | { |
138 | return trans_sym_t(alphabet((int)l, (int)r)); |
139 | } |
140 | |
141 | LexdCompiler::LexdCompiler() |
142 | { |
143 | id_to_name.push_back(""); |
144 | name_to_id[""] = string_ref(0); |
145 | lexicons[string_ref(0)] = vector<entry_t>(); |
146 | |
147 | left_sieve_name = internName("<"); |
148 | token_t lsieve_tok = {.name=left_sieve_name, .part=1, .optional=false}; |
149 | pattern_element_t lsieve_elem = {.left=lsieve_tok, .right=lsieve_tok, |
150 | .tag_filter=tag_filter_t(), |
151 | .mode=Normal}; |
152 | left_sieve_tok = vector<pattern_element_t>(1, lsieve_elem); |
153 | |
154 | right_sieve_name = internName(">"); |
155 | token_t rsieve_tok = {.name=right_sieve_name, .part=1, .optional=false}; |
156 | pattern_element_t rsieve_elem = {.left=rsieve_tok, .right=rsieve_tok, |
157 | .tag_filter=tag_filter_t(), |
158 | .mode=Normal}; |
159 | right_sieve_tok = vector<pattern_element_t>(1, rsieve_elem); |
160 | } |
161 | |
162 | LexdCompiler::~LexdCompiler() |
163 | {} |
164 | |
165 | // u_*printf only accept const UChar* |
166 | // so here's a wrapper so we don't have to write all this out every time |
167 | // and make it a macro so we don't have issues with it deallocating |
168 | #define err(s)(to_ustring(s).c_str()) (to_ustring(s).c_str()) |
169 | |
170 | void |
171 | LexdCompiler::die(const char* msg, ...) |
172 | { |
173 | UFILE* err_out = u_finitu_finit_72(stderrstderr, NULL__null, NULL__null); |
174 | u_fprintfu_fprintf_72(err_out, "Error on line %d: ", lineNumber); |
175 | va_list argptr; |
176 | va_start(argptr, msg)__builtin_va_start(argptr, msg); |
177 | u_vfprintfu_vfprintf_72(err_out, msg, argptr); |
178 | va_end(argptr)__builtin_va_end(argptr); |
179 | u_fputcu_fputc_72('\n', err_out); |
180 | exit(EXIT_FAILURE1); |
181 | } |
182 | |
183 | void LexdCompiler::appendLexicon(string_ref lexicon_id, const vector<entry_t> &to_append) |
184 | { |
185 | if(lexicons.find(lexicon_id) == lexicons.end()) |
186 | lexicons[lexicon_id] = to_append; |
187 | else |
188 | lexicons[lexicon_id].insert(lexicons[lexicon_id].begin(), to_append.begin(), to_append.end()); |
189 | } |
190 | |
191 | void |
192 | LexdCompiler::finishLexicon() |
193 | { |
194 | if(inLex) |
195 | { |
196 | if (currentLexicon.size() == 0) { |
197 | die("Lexicon '%S' is empty.", err(name(currentLexiconId))(to_ustring(name(currentLexiconId)).c_str())); |
198 | } |
199 | appendLexicon(currentLexiconId, currentLexicon); |
200 | |
201 | currentLexicon.clear(); |
202 | currentLexicon_tags.clear(); |
203 | } |
204 | inLex = false; |
205 | } |
206 | |
207 | string_ref |
208 | LexdCompiler::internName(const UnicodeString& name) |
209 | { |
210 | if(name_to_id.find(name) == name_to_id.end()) |
211 | { |
212 | name_to_id[name] = string_ref(id_to_name.size()); |
213 | id_to_name.push_back(name); |
214 | } |
215 | return name_to_id[name]; |
216 | } |
217 | |
218 | string_ref |
219 | LexdCompiler::checkName(UnicodeString& name) |
220 | { |
221 | const static UString forbidden = u" :?|()<>[]*+"; |
222 | name.trim(); |
223 | int l = name.length(); |
224 | if(l == 0) die("Unnamed pattern or lexicon."); |
225 | |
226 | for(const auto &c: forbidden) { |
227 | if(name.indexOf(c) != -1) { |
228 | die("Lexicon/pattern names cannot contain character '%C'", c); |
229 | } |
230 | } |
231 | return internName(name); |
232 | } |
233 | |
234 | tags_t |
235 | LexdCompiler::readTags(char_iter &iter, UnicodeString &line) |
236 | { |
237 | tag_filter_t filter = readTagFilter(iter, line); |
238 | if(filter.neg().empty() && filter.ops().empty()) |
239 | return tags_t((set<string_ref>)filter.pos()); |
240 | else |
241 | die("Cannot declare negative tag in lexicon"); |
242 | return tags_t(); |
243 | } |
244 | |
245 | tag_filter_t |
246 | LexdCompiler::readTagFilter(char_iter& iter, UnicodeString& line) |
247 | { |
248 | tag_filter_t tag_filter; |
249 | auto tag_start = (++iter).span(); |
250 | bool tag_nonempty = false; |
251 | bool negative = false; |
252 | vector<shared_ptr<op_tag_filter_t>> ops; |
253 | for(; !iter.at_end() && (*iter).length() > 0; ++iter) |
254 | { |
255 | if(*iter == "]" || *iter == "," || *iter == " ") |
256 | { |
257 | if(!tag_nonempty) |
258 | die("Empty tag at char %d", + iter.span().first); |
259 | UnicodeString s = line.tempSubStringBetween(tag_start.first, iter.span().first); |
260 | if(!tag_filter.combine( |
261 | negative ? tag_filter_t(neg_tag_filter_t {checkName(s)}) |
262 | : tag_filter_t(pos_tag_filter_t {checkName(s)}) |
263 | )) |
264 | die("Illegal tag filter."); |
265 | tag_nonempty = false; |
266 | negative = false; |
267 | if(*iter == "]") |
268 | { |
269 | iter++; |
270 | return tag_filter_t(tag_filter.pos(), tag_filter.neg(), ops); |
271 | } |
272 | } |
273 | else if(!tag_nonempty && *iter == "-") |
274 | { |
275 | negative = true; |
276 | } |
277 | else if(!tag_nonempty && (*iter == "|" || *iter == "^")) |
278 | { |
279 | const UnicodeString s = *iter; |
280 | if(negative) |
281 | die("Illegal negated operation."); |
282 | *iter++; |
283 | if (*iter == "[") |
284 | { |
285 | shared_ptr<op_tag_filter_t> op; |
286 | tags_t operands = readTags(iter, line); |
287 | if (s == "|") |
288 | op = make_shared<or_tag_filter_t>(operands); |
289 | else if (s == "^") |
290 | op = make_shared<xor_tag_filter_t>(operands); |
291 | ops.push_back(op); |
292 | } |
293 | else |
294 | die("Expected list of operands."); |
295 | if(*iter == "]") |
296 | { |
297 | iter++; |
298 | return tag_filter_t(tag_filter.pos(), tag_filter.neg(), ops); |
299 | } |
300 | } |
301 | else if(!tag_nonempty) |
302 | { |
303 | tag_nonempty = true; |
304 | tag_start = iter.span(); |
305 | } |
306 | } |
307 | die("End of line in tag list, expected ']'"); |
308 | return tag_filter_t(); |
309 | } |
310 | |
311 | void |
312 | LexdCompiler::appendSymbol(const UnicodeString& s, lex_token_t& tok) |
313 | { |
314 | if (shouldCombine) { |
315 | tok.symbols.push_back(alphabet_lookup(s)); |
316 | } else { |
317 | for (int c = 0; c < s.length(); c++) { |
318 | tok.symbols.push_back(alphabet_lookup(s[c])); |
319 | } |
320 | } |
321 | } |
322 | |
323 | void |
324 | LexdCompiler::readSymbol(char_iter& iter, UnicodeString& line, lex_token_t& tok) |
325 | { |
326 | if ((*iter).startsWith("\\")) { |
327 | if ((*iter).length() == 1) { |
328 | appendSymbol(*++iter, tok); |
329 | } else { |
330 | appendSymbol((*iter).tempSubString(1), tok); |
331 | } |
332 | } else if ((*iter).startsWith(":")) { |
333 | appendSymbol((*iter).tempSubString(1), tok); |
334 | } else if (*iter == "{" || *iter == "<") { |
335 | UChar end = (*iter == "{") ? '}' : '>'; |
336 | int i = iter.span().first; |
337 | for (; !iter.at_end() && *iter != end; ++iter) ; |
338 | |
339 | if (*iter == end) { |
340 | tok.symbols.push_back(alphabet_lookup(line.tempSubStringBetween(i, iter.span().second))); |
341 | } else { |
342 | die("Multichar symbol didn't end; searching for %S", err(end)(to_ustring(end).c_str())); |
343 | } |
344 | } else { |
345 | appendSymbol(*iter, tok); |
346 | } |
347 | } |
348 | |
349 | int |
350 | LexdCompiler::processRegexTokenSeq(char_iter& iter, UnicodeString& line, Transducer* trans, int start_state) |
351 | { |
352 | bool inleft = true; |
353 | vector<vector<lex_token_t>> left, right; |
354 | for (; !iter.at_end(); ++iter) { |
355 | if (*iter == "(" || *iter == ")" || *iter == "|" || *iter == "/") break; |
356 | else if (*iter == "?" || *iter == "*" || *iter == "+") |
357 | die("Quantifier %S may only be applied to parenthesized groups", err(*iter)(to_ustring(*iter).c_str())); |
358 | else if (*iter == "]") die("Regex contains mismatched ]"); |
359 | else if (*iter == ":" && inleft) inleft = false; |
360 | else if (*iter == ":") die("Regex contains multiple colons"); |
361 | else if (*iter == "[") { |
362 | ++iter; |
363 | vector<lex_token_t> sym; |
364 | for (; !iter.at_end(); ++iter) { |
365 | if (*iter == "]") break; |
366 | else if (*iter == "-" && !sym.empty()) { |
367 | ++iter; |
368 | if (*iter == "]" || iter.at_end()) { |
369 | --iter; |
370 | lex_token_t temp; |
371 | readSymbol(iter, line, temp); |
372 | sym.push_back(temp); |
373 | } else { |
374 | lex_token_t start = sym.back(); |
375 | lex_token_t end; |
376 | readSymbol(iter, line, end); |
377 | // This will fail on diacritics even with -U |
378 | // on the principle that command-line args should not |
379 | // change the validity of the code -DGS 2022-05-17 |
380 | if (start.symbols.size() != 1 || end.symbols.size() != 1 || |
381 | (int)start.symbols[0] <= 0 || (int)end.symbols[0] <= 0) |
382 | die("Cannot process symbol range between multichar symbols"); |
383 | int i_start = (int)start.symbols[0]; |
384 | int i_end = (int)end.symbols[0]; |
385 | if (i_start > i_end) |
386 | die("First character in symbol range does not preceed last"); |
387 | for (int i = 1 + i_start; i <= i_end; i++) { |
388 | lex_token_t mid; |
389 | mid.symbols.push_back((trans_sym_t)i); |
390 | sym.push_back(mid); |
391 | } |
392 | } |
393 | } else { |
394 | lex_token_t temp; |
395 | readSymbol(iter, line, temp); |
396 | sym.push_back(temp); |
397 | } |
398 | } |
399 | (inleft ? left : right).push_back(sym); |
400 | } else { |
401 | vector<lex_token_t> v_temp; |
402 | lex_token_t t_temp; |
403 | readSymbol(iter, line, t_temp); |
404 | v_temp.push_back(t_temp); |
405 | (inleft ? left : right).push_back(v_temp); |
406 | } |
407 | } |
408 | int state = start_state; |
409 | vector<lex_token_t> empty_vec; |
410 | lex_token_t empty_tok; |
411 | empty_tok.symbols.push_back(trans_sym_t()); |
412 | empty_vec.push_back(empty_tok); |
413 | for (unsigned int i = 0; i < left.size() || i < right.size(); i++) { |
414 | vector<lex_token_t>& lv = (i < left.size() && !left[i].empty() ? |
415 | left[i] : empty_vec); |
416 | vector<lex_token_t>& rv = (i < right.size() && !right[i].empty() ? |
417 | right[i] : empty_vec); |
418 | bool first = true; |
419 | int dest_state = 0; |
420 | if (inleft) { |
421 | for (auto& s : lv) { |
422 | if (first) { |
423 | dest_state = state; |
424 | for (auto& it : s.symbols) |
425 | dest_state = trans->insertNewSingleTransduction(alphabet((int)it, (int)it), dest_state); |
426 | if (dest_state == state) |
427 | dest_state = trans->insertNewSingleTransduction(0, dest_state); |
428 | first = false; |
429 | } else if (s.symbols.empty()) { |
430 | trans->linkStates(state, dest_state, 0); |
431 | } else { |
432 | int cur_state = state; |
433 | for (unsigned int k = 0; k < s.symbols.size(); k++) { |
434 | if (k+1 == s.symbols.size()) |
435 | trans->linkStates(cur_state, dest_state, alphabet((int)s.symbols[k], (int)s.symbols[k])); |
436 | else |
437 | cur_state = trans->insertNewSingleTransduction(alphabet((int)s.symbols[k], (int)s.symbols[k]), cur_state); |
438 | } |
439 | } |
440 | } |
441 | } else { |
442 | for (auto& l : lv) { |
443 | for (auto& r : rv) { |
444 | vector<int> paired; |
445 | for (unsigned int j = 0; j < l.symbols.size() || j < r.symbols.size(); j++) { |
446 | trans_sym_t ls = (j < l.symbols.size() ? l.symbols[j] : trans_sym_t()); |
447 | trans_sym_t rs = (j < r.symbols.size() ? r.symbols[j] : trans_sym_t()); |
448 | paired.push_back(alphabet((int)ls, (int)rs)); |
449 | } |
450 | if (first) { |
451 | dest_state = state; |
452 | for (auto& it : paired) { |
453 | dest_state = trans->insertNewSingleTransduction(it, dest_state); |
454 | } |
455 | first = false; |
456 | } else { |
457 | int cur_state = state; |
458 | for (unsigned int k = 0; k < paired.size(); k++) { |
459 | if (k+1 == paired.size()) |
460 | trans->linkStates(cur_state, dest_state, paired[k]); |
461 | else |
462 | cur_state = trans->insertNewSingleTransduction(paired[k], cur_state); |
463 | } |
464 | } |
465 | } |
466 | } |
467 | } |
468 | state = dest_state; |
469 | } |
470 | return state; |
471 | } |
472 | |
473 | int |
474 | LexdCompiler::processRegexGroup(char_iter& iter, UnicodeString& line, Transducer* trans, int start_state, unsigned int depth) |
475 | { |
476 | ++iter; // initial slash or paren |
477 | int state = start_state; |
478 | vector<int> option_ends; |
479 | for (; !iter.at_end(); ++iter) { |
480 | if (*iter == "(") { |
481 | state = trans->insertNewSingleTransduction(0, state); |
482 | state = processRegexGroup(iter, line, trans, state, depth+1); |
483 | --iter; |
484 | // this function ends on character after close paren or quantifier |
485 | // so step back so loop increment doesn't skip a character |
486 | } |
487 | else if (*iter == ")" || *iter == "/") break; |
488 | else if (*iter == "|") { |
489 | if (state == start_state) |
490 | state = trans->insertNewSingleTransduction(0, state); |
491 | option_ends.push_back(state); |
492 | state = start_state; |
493 | } |
494 | else { |
495 | state = processRegexTokenSeq(iter, line, trans, state); |
496 | --iter; |
497 | } |
498 | } |
499 | if (state == start_state) |
500 | state = trans->insertNewSingleTransduction(0, state); |
501 | for (auto& it : option_ends) |
502 | trans->linkStates(it, state, 0); |
503 | if ((depth > 0 && *iter == "/") || (depth == 0 && *iter == ")")) |
504 | die("Mismatched parentheses in regex"); |
505 | if (iter.at_end()) |
506 | die("Unterminated regex"); |
507 | ++iter; |
508 | if (depth > 0) { |
509 | if (*iter == "?") { |
510 | trans->linkStates(start_state, state, 0); |
511 | ++iter; |
512 | } else if (*iter == "*") { |
513 | trans->linkStates(start_state, state, 0); |
514 | trans->linkStates(state, start_state, 0); |
515 | ++iter; |
516 | } else if (*iter == "+") { |
517 | trans->linkStates(state, start_state, 0); |
518 | ++iter; |
519 | } |
520 | } |
521 | return state; |
522 | } |
523 | |
524 | lex_seg_t |
525 | LexdCompiler::processLexiconSegment(char_iter& iter, UnicodeString& line, unsigned int part_count) |
526 | { |
527 | lex_seg_t seg; |
528 | bool inleft = true; |
529 | bool left_tags_applied = false, right_tags_applied = false; |
530 | tag_filter_t tags; |
531 | if((*iter).startsWith(" ")) |
532 | { |
533 | if((*iter).length() > 1) |
534 | { |
535 | // if it's a space with a combining diacritic after it, |
536 | // then we want the diacritic |
537 | UnicodeString cur = *iter; |
538 | cur.retainBetween(1, cur.length()); |
539 | seg.left.symbols.push_back(alphabet_lookup(cur)); |
540 | } |
541 | ++iter; |
542 | } |
543 | if((*iter).startsWith("/") && seg.left.symbols.size() == 0) |
544 | { |
545 | seg.regex = new Transducer(); |
546 | int state = processRegexGroup(iter, line, seg.regex, 0, 0); |
547 | seg.regex->setFinal(state); |
548 | } |
549 | if(iter.at_end() && seg.regex == nullptr && seg.left.symbols.size() == 0) |
550 | die("Expected %d parts, found %d", currentLexiconPartCount, part_count); |
551 | for(; !iter.at_end(); ++iter) |
552 | { |
553 | if((*iter).startsWith(" ") || *iter == ']') |
554 | break; |
555 | else if(*iter == "[") |
556 | { |
557 | auto &tags_applied = inleft ? left_tags_applied : right_tags_applied; |
558 | if(tags_applied) |
559 | die("Already provided tag list for this side."); |
560 | tags = readTagFilter(iter, line); |
561 | --iter; |
562 | tags_applied = true; |
563 | } |
564 | else if((*iter).startsWith(":")) |
565 | { |
566 | if(inleft) |
567 | inleft = false; |
568 | else |
569 | die("Lexicon entry contains multiple colons"); |
570 | if ((*iter).length() > 1) readSymbol(iter, line, seg.right); |
571 | } |
572 | else readSymbol(iter, line, (inleft ? seg.left : seg.right)); |
573 | } |
574 | if(inleft) |
575 | { |
576 | seg.right = seg.left; |
577 | } |
578 | |
579 | if (seg.regex != nullptr && |
580 | !(seg.left.symbols.empty() && seg.right.symbols.empty())) |
581 | die("Lexicon entry contains both regex and text"); |
582 | |
583 | seg.tags = currentLexicon_tags; |
584 | |
585 | if(!tags.try_apply(seg.tags)) |
586 | { |
587 | tags_t diff = subtractset(tags.neg(), seg.tags); |
588 | for(string_ref t: diff) |
589 | cerr << "Bad tag '-" << to_ustring(name(t)) << "'" << endl; |
590 | die("Negative tag has no default to unset."); |
591 | } |
592 | |
593 | return seg; |
594 | } |
595 | |
596 | token_t |
597 | LexdCompiler::readToken(char_iter& iter, UnicodeString& line) |
598 | { |
599 | auto begin_charspan = iter.span(); |
600 | |
601 | const UnicodeString boundary = " :()[]+*?|<>"; |
602 | |
603 | for(; !iter.at_end() && boundary.indexOf(*iter) == -1; ++iter); |
604 | UnicodeString name; |
605 | line.extract(begin_charspan.first, (iter.at_end() ? line.length() : iter.span().first) - begin_charspan.first, name); |
606 | |
607 | if(name.length() == 0) |
608 | die("Symbol '%S' without lexicon name at u16 %d-%d", err(*iter)(to_ustring(*iter).c_str()), iter.span().first, iter.span().second-1); |
609 | |
610 | bool optional = false; |
611 | if(*iter == "?") { |
612 | iter++; |
613 | if(*iter == "(") { |
614 | optional = true; |
615 | } else { |
616 | iter--; |
617 | } |
618 | } |
619 | |
620 | unsigned int part = 1; |
621 | if(*iter == "(") |
622 | { |
623 | iter++; |
624 | begin_charspan = iter.span(); |
625 | for(; !iter.at_end() && (*iter).length() > 0 && *iter != ")"; iter++) |
626 | { |
627 | if((*iter).length() != 1 || !u_isdigitu_isdigit_72((*iter).charAt(0))) |
628 | die("Syntax error - non-numeric index in parentheses: %S", err(*iter)(to_ustring(*iter).c_str())); |
629 | } |
630 | if(*iter != ")") |
631 | die("Syntax error - unmatched parenthesis"); |
632 | if(iter.span().first == begin_charspan.first) |
633 | die("Syntax error - missing index in parenthesis"); |
634 | part = (unsigned int)StringUtils::stoi(to_ustring(line.tempSubStringBetween(begin_charspan.first, iter.span().first))); |
635 | if (part == 0) die("Invalid column number (0)"); |
636 | ++iter; |
637 | } |
638 | |
639 | return token_t {.name = internName(name), .part = part, .optional = optional}; |
640 | } |
641 | |
642 | RepeatMode |
643 | LexdCompiler::readModifier(char_iter& iter) |
644 | { |
645 | if(*iter == "?") |
646 | { |
647 | ++iter; |
648 | return Question; |
649 | } |
650 | else if(*iter == "*") |
651 | { |
652 | ++iter; |
653 | return Star; |
654 | } |
655 | else if(*iter == "+") |
656 | { |
657 | ++iter; |
658 | return Plus; |
659 | } |
660 | return Normal; |
661 | } |
662 | |
663 | pattern_element_t |
664 | LexdCompiler::readPatternElement(char_iter& iter, UnicodeString& line) |
665 | { |
666 | const UnicodeString boundary = " :()[]+*?|<>"; |
667 | pattern_element_t tok; |
668 | if(*iter == ":") |
669 | { |
670 | iter++; |
671 | if(boundary.indexOf(*iter) != -1) |
672 | { |
673 | if(*iter == ":") |
674 | die("Syntax error - double colon"); |
675 | else |
676 | die("Colon without lexicon or pattern name"); |
677 | } |
678 | tok.right = readToken(iter, line); |
679 | } |
680 | else if(boundary.indexOf(*iter) != -1) |
681 | { |
682 | die("Unexpected symbol '%S' at column %d", err(*iter)(to_ustring(*iter).c_str()), iter.span().first); |
683 | } |
684 | else |
685 | { |
686 | tok.left = readToken(iter, line); |
687 | if(*iter == "[") |
688 | { |
689 | tok.tag_filter.combine(readTagFilter(iter, line)); |
690 | } |
691 | if(*iter == ":") |
692 | { |
693 | iter++; |
694 | if(!iter.at_end() && (*iter).length() > 0) |
695 | { |
696 | if(boundary.indexOf(*iter) == -1) |
697 | { |
698 | tok.right = readToken(iter, line); |
699 | } |
700 | } |
701 | } |
702 | else |
703 | { |
704 | tok.right = tok.left; |
705 | } |
706 | } |
707 | if(*iter == "[") |
708 | { |
709 | tok.tag_filter.combine(readTagFilter(iter, line)); |
710 | } |
711 | tok.mode = readModifier(iter); |
712 | |
713 | return tok; |
714 | } |
715 | |
716 | void |
717 | LexdCompiler::processPattern(char_iter& iter, UnicodeString& line) |
718 | { |
719 | vector<pattern_t> pats_cur(1); |
720 | vector<pattern_element_t> alternation; |
721 | bool final_alternative = true; |
722 | bool sieve_forward = false; |
723 | bool just_sieved = false; |
724 | const UnicodeString boundary = " :()[]+*?|<>"; |
725 | const UnicodeString token_boundary = " )|<>"; |
726 | const UnicodeString token_side_boundary = token_boundary + ":+*?"; |
727 | const UnicodeString token_side_name_boundary = token_side_boundary + "([]"; |
728 | const UnicodeString modifier = "+*?"; |
729 | const UnicodeString decrement_after_token = token_boundary + "([]"; |
730 | |
731 | for(; !iter.at_end() && *iter != ')' && (*iter).length() > 0; ++iter) |
732 | { |
733 | if(*iter == " ") ; |
734 | else if(*iter == "|") |
735 | { |
736 | if(alternation.empty()) |
737 | die("Syntax error - initial |"); |
738 | if(!final_alternative) |
739 | die("Syntax error - multiple consecutive |"); |
740 | if(just_sieved) |
741 | die("Syntax error - sieve and alternation operators without intervening token"); |
742 | final_alternative = false; |
743 | } |
744 | else if(*iter == "<") |
745 | { |
746 | if(sieve_forward) |
747 | die("Syntax error - cannot sieve backwards after forwards."); |
748 | if(alternation.empty()) |
749 | die("Backward sieve without token?"); |
750 | if(just_sieved) |
751 | die("Syntax error - multiple consecutive sieve operators"); |
752 | if(!final_alternative) |
753 | die("Syntax error - alternation and sieve operators without intervening token"); |
754 | expand_alternation(pats_cur, alternation); |
755 | expand_alternation(pats_cur, left_sieve_tok); |
756 | alternation.clear(); |
757 | just_sieved = true; |
758 | } |
759 | else if(*iter == ">") |
760 | { |
761 | sieve_forward = true; |
762 | if(alternation.empty()) |
763 | die("Forward sieve without token?"); |
764 | if(just_sieved) |
765 | die("Syntax error - multiple consecutive sieve operators"); |
766 | if(!final_alternative) |
767 | die("Syntax error - alternation and sieve operators without intervening token"); |
768 | expand_alternation(pats_cur, alternation); |
769 | expand_alternation(pats_cur, right_sieve_tok); |
770 | alternation.clear(); |
771 | just_sieved = true; |
772 | } |
773 | else if(*iter == "[") |
774 | { |
775 | UnicodeString name = UnicodeString::fromUTF8(" " + to_string(anonymousCount++)); |
776 | currentLexiconId = internName(name); |
777 | currentLexiconPartCount = 1; |
778 | inLex = true; |
779 | entry_t entry; |
780 | entry.push_back(processLexiconSegment(++iter, line, 0)); |
781 | if(*iter == " ") iter++; |
782 | if(*iter != "]") |
783 | die("Missing closing ] for anonymous lexicon"); |
784 | currentLexicon.push_back(entry); |
785 | finishLexicon(); |
786 | if(final_alternative && !alternation.empty()) |
787 | { |
788 | expand_alternation(pats_cur, alternation); |
789 | alternation.clear(); |
790 | } |
791 | ++iter; |
792 | pattern_element_t anon; |
793 | anon.left = {.name=currentLexiconId, .part=1, .optional=false}; |
794 | anon.right = anon.left; |
795 | anon.mode = readModifier(iter); |
796 | alternation.push_back(anon); |
797 | --iter; |
798 | final_alternative = true; |
799 | just_sieved = false; |
800 | } |
801 | else if(*iter == "(") |
802 | { |
803 | string_ref temp = currentPatternId; |
804 | UnicodeString name = UnicodeString::fromUTF8(" " + to_string(anonymousCount++)); |
805 | currentPatternId = internName(name); |
806 | ++iter; |
807 | processPattern(iter, line); |
808 | if(*iter == " ") |
809 | *iter++; |
810 | if(iter.at_end() || *iter != ")") |
811 | die("Missing closing ) for anonymous pattern"); |
812 | ++iter; |
813 | tag_filter_t filter; |
814 | if(*iter == "[") |
815 | filter = readTagFilter(iter, line); |
816 | if(final_alternative && !alternation.empty()) |
817 | { |
818 | expand_alternation(pats_cur, alternation); |
819 | alternation.clear(); |
820 | } |
821 | pattern_element_t anon; |
822 | anon.left = {.name=currentPatternId, .part=1, .optional=false}; |
823 | anon.right = anon.left; |
824 | anon.mode = readModifier(iter); |
825 | anon.tag_filter = filter; |
826 | for(const auto &tok : distribute_tag_expressions(anon)) |
827 | alternation.push_back(tok); |
828 | --iter; |
829 | currentPatternId = temp; |
830 | final_alternative = true; |
831 | just_sieved = false; |
832 | } |
833 | else if(*iter == "?" || *iter == "*" || *iter == "+") |
834 | { |
835 | die("Syntax error - unexpected modifier at u16 %d-%d", iter.span().first, iter.span().second); |
836 | } |
837 | else |
838 | { |
839 | if(final_alternative && !alternation.empty()) |
840 | { |
841 | expand_alternation(pats_cur, alternation); |
842 | alternation.clear(); |
843 | } |
844 | for(const auto &tok : distribute_tag_expressions(readPatternElement(iter, line))) |
845 | alternation.push_back(tok); |
846 | iter--; |
847 | final_alternative = true; |
848 | just_sieved = false; |
849 | } |
850 | } |
851 | if(!final_alternative) |
852 | die("Syntax error - trailing |"); |
853 | if(just_sieved) |
854 | die("Syntax error - trailing sieve (< or >)"); |
855 | expand_alternation(pats_cur, alternation); |
856 | for(const auto &pat : pats_cur) |
857 | { |
858 | patterns[currentPatternId].push_back(make_pair(lineNumber, pat)); |
859 | } |
860 | } |
861 | |
862 | void |
863 | LexdCompiler::processNextLine() |
864 | { |
865 | UnicodeString line; |
866 | UChar c; |
867 | bool escape = false; |
868 | bool comment = false; |
869 | bool lastWasSpace = false; |
870 | while((c = u_fgetcu_fgetc_72(input)) != '\n') |
871 | { |
872 | bool space = false; |
873 | if(c == U_EOF0xFFFF) |
874 | { |
875 | doneReading = true; |
876 | break; |
877 | } |
878 | if(comment) continue; |
879 | if(escape) |
880 | { |
881 | line += c; |
882 | escape = false; |
883 | } |
884 | else if(c == '\\') |
885 | { |
886 | escape = true; |
887 | line += c; |
888 | } |
889 | else if(c == '#') |
890 | { |
891 | comment = true; |
892 | } |
893 | else if(u_isWhitespaceu_isWhitespace_72(c)) |
894 | { |
895 | if(line.length() > 0 && !lastWasSpace) |
896 | { |
897 | line += ' '; |
898 | } |
899 | space = (line.length() > 0); |
900 | } |
901 | else line += c; |
902 | lastWasSpace = space; |
903 | } |
904 | lineNumber++; |
905 | if(escape) die("Trailing backslash"); |
906 | if(line.length() == 0) return; |
907 | |
908 | if(line == "PATTERNS" || line == "PATTERNS ") |
909 | { |
910 | finishLexicon(); |
911 | UnicodeString name = " "; |
912 | currentPatternId = internName(name); |
913 | inPat = true; |
914 | } |
915 | else if(line.length() > 7 && line.startsWith("PATTERN ")) |
916 | { |
917 | UnicodeString name = line.tempSubString(8); |
918 | finishLexicon(); |
919 | currentPatternId = checkName(name); |
920 | if (lexicons.find(currentPatternId) != lexicons.end()) { |
921 | die("The name '%S' cannot be used for both LEXICONs and PATTERNs.", |
922 | err(name)(to_ustring(name).c_str())); |
923 | } |
924 | inPat = true; |
925 | } |
926 | else if(line.length() > 7 && line.startsWith("LEXICON ")) |
927 | { |
928 | UnicodeString name = line.tempSubString(8); |
929 | name.trim(); |
930 | finishLexicon(); |
931 | if(name.length() > 1 && name.indexOf('[') != -1) |
932 | { |
933 | UnicodeString tags = name.tempSubString(name.indexOf('[')); |
934 | auto c = char_iter(tags); |
935 | currentLexicon_tags = readTags(c, tags); |
936 | if(c != c.end() && *c == ":") |
937 | { |
938 | cerr << "WARNING: One-sided tags are deprecated and will soon be removed (line " << lineNumber << ")" << endl; |
939 | ++c; |
940 | if(*c == "[") |
941 | unionset_inplace(currentLexicon_tags, readTags(c, tags)); |
942 | else |
943 | die("Expected start of default right tags '[' after ':'."); |
944 | } |
945 | if(c != c.end()) |
946 | die("Unexpected character '%C' after default tags.", (*c)[0]); |
947 | name.retainBetween(0, name.indexOf('[')); |
948 | } |
949 | currentLexiconPartCount = 1; |
950 | if(name.length() > 1 && name.endsWith(')')) |
951 | { |
952 | UnicodeString num; |
953 | for(int i = name.length()-2; i > 0; i--) |
954 | { |
955 | if(u_isdigitu_isdigit_72(name[i])) num = name[i] + num; |
956 | else if(name[i] == '(' && num.length() > 0) |
957 | { |
958 | currentLexiconPartCount = (unsigned int)StringUtils::stoi(to_ustring(num)); |
959 | name = name.retainBetween(0, i); |
960 | } |
961 | else break; |
962 | } |
963 | if(name.length() == 0) die("Unnamed lexicon"); |
964 | } |
965 | currentLexiconId = checkName(name); |
966 | if(lexicons.find(currentLexiconId) != lexicons.end()) { |
967 | if(lexicons[currentLexiconId][0].size() != currentLexiconPartCount) { |
968 | die("Multiple incompatible definitions for lexicon '%S'.", err(name)(to_ustring(name).c_str())); |
969 | } |
970 | } |
971 | if (patterns.find(currentLexiconId) != patterns.end()) { |
972 | die("The name '%S' cannot be used for both LEXICONs and PATTERNs.", |
973 | err(name)(to_ustring(name).c_str())); |
974 | } |
975 | inLex = true; |
976 | inPat = false; |
977 | } |
978 | else if(line.length() >= 9 && line.startsWith("ALIAS ")) |
979 | { |
980 | finishLexicon(); |
981 | if(line.endsWith(' ')) line.retainBetween(0, line.length()-1); |
982 | int loc = line.indexOf(" ", 6); |
983 | if(loc == -1) die("Expected 'ALIAS lexicon alt_name'"); |
984 | UnicodeString name = line.tempSubString(6, loc-6); |
985 | UnicodeString alt = line.tempSubString(loc+1); |
986 | string_ref altid = checkName(alt); |
987 | string_ref lexid = checkName(name); |
988 | if(lexicons.find(lexid) == lexicons.end()) die("Attempt to alias undefined lexicon '%S'.", err(name)(to_ustring(name).c_str())); |
989 | lexicons[altid] = lexicons[lexid]; |
990 | inLex = false; |
991 | inPat = false; |
992 | } |
993 | else if(inPat) |
994 | { |
995 | char_iter iter = char_iter(line); |
996 | processPattern(iter, line); |
997 | if(!iter.at_end() && (*iter).length() > 0) |
998 | die("Unexpected %S", err(*iter)(to_ustring(*iter).c_str())); |
999 | } |
1000 | else if(inLex) |
1001 | { |
1002 | char_iter iter = char_iter(line); |
1003 | entry_t entry; |
1004 | for(unsigned int i = 0; i < currentLexiconPartCount; i++) |
1005 | { |
1006 | entry.push_back(processLexiconSegment(iter, line, i)); |
1007 | if (*iter == "]") die("Unexpected closing bracket."); |
1008 | } |
1009 | if(*iter == ' ') ++iter; |
1010 | if(!iter.at_end()) |
1011 | die("Lexicon entry has '%S' (found at u16 %d), more than %d components", err(*iter)(to_ustring(*iter).c_str()), iter.span().first, currentLexiconPartCount); |
1012 | currentLexicon.push_back(entry); |
1013 | } |
1014 | else die("Expected 'PATTERNS' or 'LEXICON'"); |
1015 | } |
1016 | |
1017 | bool |
1018 | LexdCompiler::isLexiconToken(const pattern_element_t& tok) |
1019 | { |
1020 | const bool llex = (tok.left.name.empty() || (lexicons.find(tok.left.name) != lexicons.end())); |
1021 | const bool rlex = (tok.right.name.empty() || (lexicons.find(tok.right.name) != lexicons.end())); |
1022 | if(llex && rlex) |
1023 | { |
1024 | return true; |
1025 | } |
1026 | const bool lpat = (patterns.find(tok.left.name) != patterns.end()); |
1027 | const bool rpat = (patterns.find(tok.right.name) != patterns.end()); |
1028 | if(tok.left.name == tok.right.name && lpat && rpat) |
1029 | { |
1030 | if(tok.left.part != 1 || tok.right.part != 1) |
1031 | { |
1032 | die("Cannote select part of pattern %S", err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
1033 | } |
1034 | return false; |
1035 | } |
1036 | // Any other scenario is an error, so we need to die() |
1037 | if(lpat && rpat) |
1038 | { |
1039 | die("Cannot collate pattern %S with %S", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
1040 | } |
1041 | else if((lpat && tok.right.name.empty()) || (rpat && tok.left.name.empty())) |
1042 | { |
1043 | die("Cannot select side of pattern %S", err(name(tok.left.name.valid() ? tok.left.name : tok.right.name))(to_ustring(name(tok.left.name.valid() ? tok.left.name : tok. right.name)).c_str())); |
1044 | } |
1045 | else if(llex && rpat) |
1046 | { |
1047 | die("Cannot collate lexicon %S with pattern %S", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
1048 | } |
1049 | else if(lpat && rlex) |
1050 | { |
1051 | die("Cannot collate pattern %S with lexicon %S", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
1052 | } |
1053 | else |
1054 | { |
1055 | cerr << "Patterns: "; |
1056 | for(auto pat: patterns) |
1057 | cerr << to_ustring(name(pat.first)) << " "; |
1058 | cerr << endl; |
1059 | cerr << "Lexicons: "; |
1060 | for(auto l: lexicons) |
1061 | cerr << to_ustring(name(l.first)) << " "; |
1062 | cerr << endl; |
1063 | die("Lexicon or pattern '%S' is not defined.", err(name((llex || lpat) ? tok.right.name : tok.left.name))(to_ustring(name((llex || lpat) ? tok.right.name : tok.left.name )).c_str())); |
1064 | } |
1065 | // we never reach this point, but the compiler doesn't understand die() |
1066 | // so we put a fake return value to keep it happy |
1067 | return false; |
1068 | } |
1069 | |
1070 | void |
1071 | LexdCompiler::buildPattern(int state, Transducer* t, const pattern_t& pat, const vector<int> is_free, unsigned int pos) |
1072 | { |
1073 | if(pos == pat.size()) |
1074 | { |
1075 | t->setFinal(state); |
1076 | return; |
1077 | } |
1078 | const pattern_element_t& tok = pat[pos]; |
1079 | if(tok.left.name == left_sieve_name) |
1080 | { |
1081 | t->linkStates(t->getInitial(), state, 0); |
1082 | buildPattern(state, t, pat, is_free, pos+1); |
1083 | } |
1084 | else if(tok.left.name == right_sieve_name) |
1085 | { |
1086 | t->setFinal(state); |
1087 | buildPattern(state, t, pat, is_free, pos+1); |
1088 | } |
1089 | else if(isLexiconToken(tok)) |
1090 | { |
1091 | if(is_free[pos] == 1) |
1092 | { |
1093 | Transducer *lex = getLexiconTransducer(pat[pos], 0, true); |
1094 | if(lex) |
1095 | { |
1096 | int new_state = t->insertTransducer(state, *lex); |
1097 | buildPattern(new_state, t, pat, is_free, pos+1); |
1098 | } |
1099 | return; |
1100 | } |
1101 | else if(matchedParts.find(tok.left.name) == matchedParts.end() && |
1102 | matchedParts.find(tok.right.name) == matchedParts.end()) |
1103 | { |
1104 | unsigned int max = lexicons[tok.left.name || tok.right.name].size(); |
1105 | if (tok.optional()) max++; |
1106 | for(unsigned int index = 0; index < max; index++) |
1107 | { |
1108 | Transducer *lex = getLexiconTransducer(pat[pos], index, false); |
1109 | if(lex) |
1110 | { |
1111 | int new_state = t->insertTransducer(state, *lex); |
1112 | if(new_state == state) |
1113 | { |
1114 | new_state = t->insertNewSingleTransduction(0, state); |
1115 | } |
1116 | if(tok.left.name.valid()) matchedParts[tok.left.name] = index; |
1117 | if(tok.right.name.valid()) matchedParts[tok.right.name] = index; |
1118 | buildPattern(new_state, t, pat, is_free, pos+1); |
1119 | } |
1120 | } |
1121 | if(tok.left.name.valid()) matchedParts.erase(tok.left.name); |
1122 | if(tok.right.name.valid()) matchedParts.erase(tok.right.name); |
1123 | return; |
1124 | } |
1125 | if(tok.left.name.valid() && matchedParts.find(tok.left.name) == matchedParts.end()) |
1126 | matchedParts[tok.left.name] = matchedParts[tok.right.name]; |
1127 | if(tok.right.name.valid() && matchedParts.find(tok.right.name) == matchedParts.end()) |
1128 | matchedParts[tok.right.name] = matchedParts[tok.left.name]; |
1129 | if(tok.left.name.valid() && tok.right.name.valid() && matchedParts[tok.left.name] != matchedParts[tok.right.name]) |
1130 | die("Cannot collate %S with %S - both appear in free variation earlier in the pattern.", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
1131 | Transducer* lex = getLexiconTransducer(pat[pos], matchedParts[tok.left.name || tok.right.name], false); |
1132 | if(lex) |
1133 | { |
1134 | int new_state = t->insertTransducer(state, *lex); |
1135 | buildPattern(new_state, t, pat, is_free, pos+1); |
1136 | } |
1137 | return; |
1138 | } |
1139 | else |
1140 | { |
1141 | Transducer *p = buildPattern(tok); |
1142 | if(!p->hasNoFinals()) |
1143 | { |
1144 | int new_state = t->insertTransducer(state, *p); |
1145 | if(tok.mode & Optional) |
1146 | t->linkStates(state, new_state, 0); |
1147 | if(tok.mode & Repeated) |
1148 | t->linkStates(new_state, state, 0); |
1149 | buildPattern(new_state, t, pat, is_free, pos+1); |
1150 | } |
1151 | } |
1152 | } |
1153 | |
1154 | vector<int> |
1155 | LexdCompiler::determineFreedom(pattern_t& pat) |
1156 | { |
1157 | vector<int> is_free = vector<int>(pat.size(), 0); |
1158 | map<string_ref, bool> is_optional; |
1159 | for(unsigned int i = 0; i < pat.size(); i++) |
1160 | { |
1161 | const pattern_element_t& t1 = pat[i]; |
1162 | if (is_optional.find(t1.left.name) != is_optional.end() && is_optional[t1.left.name] != t1.optional()) { |
1163 | die("Lexicon %S cannot be both optional and non-optional in a single pattern.", err(name(t1.left.name))(to_ustring(name(t1.left.name)).c_str())); |
1164 | } |
1165 | if (is_optional.find(t1.right.name) != is_optional.end() && is_optional[t1.right.name] != t1.optional()) { |
1166 | die("Lexicon %S cannot be both optional and non-optional in a single pattern.", err(name(t1.right.name))(to_ustring(name(t1.right.name)).c_str())); |
1167 | } |
1168 | if (t1.left.name.valid()) { |
1169 | is_optional[t1.left.name] = t1.optional(); |
1170 | } |
1171 | if (t1.right.name.valid()) { |
1172 | is_optional[t1.right.name] = t1.optional(); |
1173 | } |
1174 | if(is_free[i] != 0) |
1175 | continue; |
1176 | for(unsigned int j = i+1; j < pat.size(); j++) |
1177 | { |
1178 | const pattern_element_t& t2 = pat[j]; |
1179 | if((t1.left.name.valid() && (t1.left.name == t2.left.name || t1.left.name == t2.right.name)) || |
1180 | (t1.right.name.valid() && (t1.right.name == t2.left.name || t1.right.name == t2.right.name))) |
1181 | { |
1182 | is_free[i] = -1; |
1183 | is_free[j] = -1; |
1184 | } |
1185 | } |
1186 | is_free[i] = (is_free[i] == 0 ? 1 : -1); |
1187 | } |
1188 | return is_free; |
1189 | } |
1190 | |
1191 | Transducer* |
1192 | LexdCompiler::buildPattern(const pattern_element_t &tok) |
1193 | { |
1194 | if(tok.left.part != 1 || tok.right.part != 1) |
1195 | die("Cannot build collated pattern %S", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str())); |
1196 | if(patternTransducers.find(tok) == patternTransducers.end()) |
1197 | { |
1198 | if (verbose) cerr << "Compiling " << to_ustring(printPattern(tok)) << endl; |
1199 | auto start_time = chrono::steady_clock::now(); |
1200 | Transducer* t = new Transducer(); |
1201 | patternTransducers[tok] = NULL__null; |
1202 | map<string_ref, unsigned int> tempMatch; |
1203 | tempMatch.swap(matchedParts); |
1204 | for(auto &pat_untagged : patterns[tok.left.name]) |
1205 | { |
1206 | for(unsigned int i = 0; i < pat_untagged.second.size(); i++) |
1207 | { |
1208 | auto pat = pat_untagged; |
1209 | bool taggable = true; |
1210 | for (unsigned int j = 0; j < pat.second.size(); j++) { |
1211 | auto& pair = pat.second[j]; |
1212 | if(!pair.tag_filter.combine(tok.tag_filter.neg())) { |
1213 | taggable = false; |
1214 | if (verbose) { |
1215 | cerr << "Warning: The tags of " << to_ustring(printPattern(tok)); |
1216 | cerr << " conflict with " << to_ustring(printPattern(pat_untagged.second[j])); |
1217 | cerr << " on line " << pat.first << "." << endl; |
1218 | } |
1219 | } |
1220 | } |
1221 | if(!pat.second[i].tag_filter.combine(tok.tag_filter.pos())) { |
1222 | taggable = false; |
1223 | if (verbose) { |
1224 | cerr << "Warning: The tags of " << to_ustring(printPattern(tok)); |
1225 | cerr << " conflict with " << to_ustring(printPattern(pat_untagged.second[i])); |
1226 | cerr << " on line " << pat.first << "." << endl; |
1227 | } |
1228 | } |
1229 | if (!taggable) continue; |
1230 | |
1231 | matchedParts.clear(); |
1232 | lineNumber = pat.first; |
1233 | vector<int> is_free = determineFreedom(pat.second); |
1234 | buildPattern(t->getInitial(), t, pat.second, is_free, 0); |
1235 | } |
1236 | } |
1237 | tempMatch.swap(matchedParts); |
1238 | if(!t->hasNoFinals()) |
1239 | { |
1240 | if (verbose) |
1241 | cerr << "Minimizing " << to_ustring(printPattern(tok)) << endl; |
1242 | t->minimize(); |
1243 | } |
1244 | else if (verbose) { |
1245 | cerr << "Warning: " << to_ustring(printPattern(tok)); |
1246 | cerr << " is empty." << endl; |
1247 | } |
1248 | patternTransducers[tok] = t; |
1249 | if (verbose) { |
1250 | auto end_time = chrono::steady_clock::now(); |
1251 | chrono::duration<double> diff = end_time - start_time; |
1252 | cerr << "Done compiling " << to_ustring(printPattern(tok)); |
1253 | cerr << " in " << diff.count() << " seconds." << endl; |
1254 | } |
1255 | } |
1256 | else if(patternTransducers[tok] == NULL__null) |
1257 | { |
1258 | die("Cannot compile self-recursive %S", err(printPattern(tok))(to_ustring(printPattern(tok)).c_str())); |
1259 | } |
1260 | return patternTransducers[tok]; |
1261 | } |
1262 | |
1263 | int |
1264 | LexdCompiler::insertPreTags(Transducer* t, int state, tag_filter_t &tags) |
1265 | { |
1266 | int end = state; |
1267 | for(auto tag : tags.pos()) |
1268 | { |
1269 | trans_sym_t flag = getFlag(Positive, tag, 1); |
1270 | end = t->insertSingleTransduction((int)alphabet_lookup(flag, flag), end); |
1271 | } |
1272 | for(auto tag : tags.neg()) |
1273 | { |
1274 | trans_sym_t flag = getFlag(Positive, tag, 2); |
1275 | end = t->insertSingleTransduction((int)alphabet_lookup(flag, flag), end); |
1276 | } |
1277 | return end; |
1278 | } |
1279 | |
1280 | int |
1281 | LexdCompiler::insertPostTags(Transducer* t, int state, tag_filter_t &tags) |
1282 | { |
1283 | int end = 0; |
1284 | int flag_dest = 0; |
1285 | for(auto tag : tags.pos()) |
1286 | { |
1287 | trans_sym_t flag = getFlag(Disallow, tag, 1); |
1288 | trans_sym_t clear = getFlag(Clear, tag, 0); |
1289 | if(flag_dest == 0) |
1290 | { |
1291 | flag_dest = t->insertSingleTransduction((int)alphabet_lookup(flag, flag), state); |
1292 | end = flag_dest; |
1293 | } |
1294 | else |
1295 | { |
1296 | t->linkStates(state, flag_dest, (int)alphabet_lookup(flag, flag)); |
1297 | } |
1298 | end = t->insertSingleTransduction((int)alphabet_lookup(clear, clear), end); |
1299 | } |
1300 | if(end == 0) |
1301 | { |
1302 | end = state; |
1303 | } |
1304 | for(auto tag : tags.neg()) |
1305 | { |
1306 | trans_sym_t clear = getFlag(Clear, tag, 0); |
1307 | end = t->insertSingleTransduction((int)alphabet_lookup(clear, clear), end); |
1308 | } |
1309 | return end; |
1310 | } |
1311 | |
1312 | Transducer* |
1313 | LexdCompiler::buildPatternWithFlags(const pattern_element_t &tok, int pattern_start_state = 0) |
1314 | { |
1315 | if(patternTransducers.find(tok) == patternTransducers.end()) |
1316 | { |
1317 | if (verbose) cerr << "Compiling " << to_ustring(printPattern(tok)) << endl; |
1318 | auto start_time = chrono::steady_clock::now(); |
1319 | Transducer* trans = (shouldHypermin ? hyperminTrans : new Transducer()); |
1320 | patternTransducers[tok] = NULL__null; |
1321 | unsigned int transition_index = 0; |
1322 | vector<int> pattern_finals; |
1323 | bool did_anything = false; |
1324 | for(auto& pat : patterns[tok.left.name]) |
1325 | { |
1326 | lineNumber = pat.first; |
1327 | vector<int> is_free = determineFreedom(pat.second); |
1328 | bool got_non_null = false; |
1329 | unsigned int count = (tok.tag_filter.pos().size() > 0 ? pat.second.size() : 1); |
1330 | if(tagsAsFlags) count = 1; |
1331 | for(unsigned int idx = 0; idx < count; idx++) |
1332 | { |
1333 | int state = pattern_start_state; |
1334 | vector<int> finals; |
1335 | set<string_ref> to_clear; |
1336 | bool got_null = false; |
1337 | for(unsigned int i = 0; i < pat.second.size(); i++) |
1338 | { |
1339 | pattern_element_t cur = pat.second[i]; |
1340 | |
1341 | if(cur.left.name == left_sieve_name) |
1342 | { |
1343 | trans->linkStates(pattern_start_state, state, 0); |
1344 | continue; |
1345 | } |
1346 | else if(cur.left.name == right_sieve_name) |
1347 | { |
1348 | finals.push_back(state); |
1349 | continue; |
1350 | } |
1351 | |
1352 | bool isLex = isLexiconToken(cur); |
1353 | |
1354 | transition_index++; |
1355 | |
1356 | int mode_start = state; |
1357 | cur.mode = Normal; |
1358 | |
1359 | tag_filter_t current_tags; |
1360 | if(tagsAsFlags) |
1361 | { |
1362 | state = insertPreTags(trans, state, cur.tag_filter); |
1363 | current_tags = cur.tag_filter; |
1364 | cur.tag_filter = tag_filter_t(); |
1365 | } |
1366 | else |
1367 | { |
1368 | if (i == idx && !cur.tag_filter.combine(tok.tag_filter.pos())) { |
1369 | if (verbose) { |
1370 | cerr << "Warning: The tags of " << to_ustring(printPattern(tok)); |
1371 | cerr << " conflict with " << to_ustring(printPattern(pat.second[i])); |
1372 | cerr << " on line " << pat.first << "." << endl; |
1373 | } |
1374 | } |
1375 | if (!cur.tag_filter.combine(tok.tag_filter.neg())) { |
1376 | if (verbose) { |
1377 | cerr << "Warning: The tags of " << to_ustring(printPattern(tok)); |
1378 | cerr << " conflict with " << to_ustring(printPattern(pat.second[i])); |
1379 | cerr << " on line " << pat.first << "." << endl; |
1380 | } |
1381 | } |
1382 | } |
1383 | |
1384 | Transducer* t; |
1385 | if(shouldHypermin) |
1386 | { |
1387 | trans_sym_t inflag = getFlag(Positive, tok.left.name, transition_index); |
1388 | trans_sym_t outflag = getFlag(Require, tok.left.name, transition_index); |
1389 | int in_tr = (int)alphabet_lookup(inflag, inflag); |
1390 | int out_tr = (int)alphabet_lookup(outflag, outflag); |
1391 | if(is_free[i] == -1 && isLex) |
1392 | { |
1393 | to_clear.insert(cur.left.name); |
1394 | to_clear.insert(cur.right.name); |
1395 | } |
1396 | if(transducerLocs.find(cur) != transducerLocs.end()) |
1397 | { |
1398 | auto loc = transducerLocs[cur]; |
1399 | if(loc.first == loc.second) |
1400 | { |
1401 | t = NULL__null; |
1402 | } |
1403 | else |
1404 | { |
1405 | t = trans; |
1406 | trans->linkStates(state, loc.first, in_tr); |
1407 | state = trans->insertSingleTransduction(out_tr, loc.second); |
1408 | } |
1409 | } |
1410 | else |
1411 | { |
1412 | int start = trans->insertSingleTransduction(in_tr, state); |
1413 | int end = start; |
1414 | if(isLex) |
1415 | { |
1416 | t = getLexiconTransducerWithFlags(cur, false); |
1417 | if(t == NULL__null) |
1418 | { |
1419 | transducerLocs[cur] = make_pair(start, start); |
1420 | } |
1421 | else |
1422 | { |
1423 | end = trans->insertTransducer(start, *t); |
1424 | transducerLocs[cur] = make_pair(start, end); |
1425 | } |
1426 | } |
1427 | else |
1428 | { |
1429 | t = buildPatternWithFlags(cur, start); |
1430 | end = transducerLocs[cur].second; |
1431 | } |
1432 | state = trans->insertSingleTransduction(out_tr, end); |
1433 | } |
1434 | } |
1435 | else if(isLex) |
1436 | { |
1437 | t = getLexiconTransducerWithFlags(cur, (is_free[i] == 1)); |
1438 | if(is_free[i] == -1) |
1439 | { |
1440 | to_clear.insert(cur.left.name); |
1441 | to_clear.insert(cur.right.name); |
1442 | } |
1443 | } |
1444 | else |
1445 | { |
1446 | t = buildPatternWithFlags(cur); |
1447 | } |
1448 | if(t == NULL__null || (!shouldHypermin && t->hasNoFinals())) |
1449 | { |
1450 | got_null = true; |
1451 | break; |
1452 | } |
1453 | got_non_null = true; |
1454 | if(!shouldHypermin) |
1455 | { |
1456 | state = trans->insertTransducer(state, *t); |
1457 | } |
1458 | if(tagsAsFlags) |
1459 | { |
1460 | state = insertPostTags(trans, state, current_tags); |
1461 | } |
1462 | if(pat.second[i].mode & Optional) |
1463 | { |
1464 | trans->linkStates(mode_start, state, 0); |
1465 | } |
1466 | if(pat.second[i].mode & Repeated) |
1467 | { |
1468 | trans->linkStates(state, mode_start, 0); |
1469 | } |
1470 | } |
1471 | if(!got_null || finals.size() > 0) |
1472 | { |
1473 | for(auto fin : finals) |
1474 | { |
1475 | trans->linkStates(fin, state, 0); |
1476 | } |
1477 | for(auto lex : to_clear) |
1478 | { |
1479 | if(lex.empty()) |
1480 | { |
1481 | continue; |
1482 | } |
1483 | UnicodeString flag = "@C."; |
1484 | encodeFlag(flag, (int)lex.i); |
1485 | flag += "@"; |
1486 | trans_sym_t f = alphabet_lookup(flag); |
1487 | state = trans->insertSingleTransduction((int)alphabet_lookup(f, f), state); |
1488 | } |
1489 | trans->setFinal(state); |
1490 | pattern_finals.push_back(state); |
1491 | } |
1492 | } |
1493 | if(!got_non_null) |
1494 | { |
1495 | continue; |
1496 | } |
1497 | did_anything = true; |
1498 | } |
1499 | if(did_anything) |
1500 | { |
1501 | if(shouldHypermin) |
1502 | { |
1503 | if(pattern_finals.size() > 0) |
1504 | { |
1505 | int end = pattern_finals[0]; |
1506 | for(auto fin : pattern_finals) |
1507 | { |
1508 | if(fin != end) |
1509 | { |
1510 | trans->linkStates(fin, end, 0); |
1511 | } |
1512 | if(pattern_start_state != 0) |
1513 | { |
1514 | trans->setFinal(fin, 0, false); |
1515 | } |
1516 | } |
1517 | pattern_element_t key = tok; |
1518 | key.mode = Normal; |
1519 | transducerLocs[key] = make_pair(pattern_start_state, end); |
1520 | } |
1521 | } |
1522 | else |
1523 | { |
1524 | if(!trans->hasNoFinals()) { |
1525 | if (verbose) |
1526 | cerr << "Minimizing " << to_ustring(printPattern(tok)) << endl; |
1527 | trans->minimize(); |
1528 | } |
1529 | } |
1530 | } |
1531 | else |
1532 | { |
1533 | if(!shouldHypermin) |
1534 | trans = NULL__null; |
1535 | else |
1536 | { |
1537 | cerr << "FIXME" << endl; |
1538 | } |
1539 | } |
1540 | if (verbose) { |
1541 | auto end_time = chrono::steady_clock::now(); |
1542 | chrono::duration<double> diff = end_time - start_time; |
1543 | cerr << "Done compiling " << to_ustring(printPattern(tok)); |
1544 | cerr << " in " << diff.count() << " seconds." << endl; |
1545 | } |
1546 | patternTransducers[tok] = trans; |
1547 | } |
1548 | else if(patternTransducers[tok] == NULL__null) |
1549 | { |
1550 | die("Cannot compile self-recursive pattern '%S'", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str())); |
1551 | } |
1552 | return patternTransducers[tok]; |
1553 | } |
1554 | |
1555 | void |
1556 | LexdCompiler::buildAllLexicons() |
1557 | { |
1558 | // find out if there are any lexicons that we can build without flags |
1559 | vector<pattern_element_t> lexicons_to_build; |
1560 | for(auto pattern : patterns) |
1561 | { |
1562 | for(auto pat : pattern.second) |
1563 | { |
1564 | lineNumber = pat.first; |
1565 | vector<int> free = determineFreedom(pat.second); |
1566 | for(size_t i = 0; i < pat.second.size(); i++) |
1567 | { |
1568 | if(pat.second[i].left.name == left_sieve_name || |
1569 | pat.second[i].left.name == right_sieve_name) |
1570 | { |
1571 | continue; |
1572 | } |
1573 | if(isLexiconToken(pat.second[i])) |
1574 | { |
1575 | pattern_element_t& tok = pat.second[i]; |
1576 | if(free[i] == -1) |
1577 | { |
1578 | lexiconFreedom[tok.left.name] = false; |
1579 | lexiconFreedom[tok.right.name] = false; |
1580 | } |
1581 | else |
1582 | { |
1583 | if(lexiconFreedom.find(tok.left.name) == lexiconFreedom.end()) |
1584 | { |
1585 | lexiconFreedom[tok.left.name] = true; |
1586 | } |
1587 | if(lexiconFreedom.find(tok.right.name) == lexiconFreedom.end()) |
1588 | { |
1589 | lexiconFreedom[tok.right.name] = true; |
1590 | } |
1591 | } |
1592 | lexicons_to_build.push_back(tok); |
1593 | } |
1594 | } |
1595 | } |
1596 | } |
1597 | lexiconFreedom[string_ref(0)] = true; |
1598 | for(auto tok : lexicons_to_build) |
1599 | { |
1600 | tok.tag_filter = tag_filter_t(); |
1601 | tok.mode = Normal; |
1602 | bool free = ((tok.left.name.empty() || lexiconFreedom[tok.left.name]) && |
1603 | (tok.right.name.empty() || lexiconFreedom[tok.right.name])); |
1604 | getLexiconTransducerWithFlags(tok, free); |
1605 | } |
1606 | } |
1607 | |
1608 | int |
1609 | LexdCompiler::buildPatternSingleLexicon(pattern_element_t tok, int start_state) |
1610 | { |
1611 | if(patternTransducers.find(tok) == patternTransducers.end() || patternTransducers[tok] != NULL__null) |
1612 | { |
1613 | patternTransducers[tok] = NULL__null; |
1614 | int end = -1; |
1615 | string_ref transition_flag = internName(" "); |
1616 | for(auto pattern : patterns[tok.left.name]) |
1617 | { |
1618 | int next_start_state = start_state; |
1619 | size_t next_start_idx = 0; |
1620 | lineNumber = pattern.first; |
1621 | set<string_ref> to_clear; |
1622 | size_t count = (tok.tag_filter.pos().empty() ? 1 : pattern.second.size()); |
1623 | for(size_t tag_idx = 0; tag_idx < count; tag_idx++) |
1624 | { |
1625 | int state = next_start_state; |
1626 | bool finished = true; |
1627 | for(size_t i = next_start_idx; i < pattern.second.size(); i++) |
1628 | { |
1629 | pattern_element_t cur = pattern.second[i]; |
1630 | |
1631 | if(cur.left.name == left_sieve_name) |
1632 | { |
1633 | hyperminTrans->linkStates(start_state, state, 0); |
1634 | continue; |
1635 | } |
1636 | else if(cur.left.name == right_sieve_name) |
1637 | { |
1638 | if(end == -1) |
1639 | { |
1640 | end = hyperminTrans->insertNewSingleTransduction(0, state); |
1641 | } |
1642 | else |
1643 | { |
1644 | hyperminTrans->linkStates(state, end, 0); |
1645 | } |
1646 | continue; |
1647 | } |
1648 | |
1649 | if(i == tag_idx) |
1650 | { |
1651 | next_start_state = state; |
1652 | next_start_idx = tag_idx; |
1653 | cur.tag_filter.combine(tok.tag_filter.pos()); |
1654 | } |
1655 | cur.tag_filter.combine(tok.tag_filter.neg()); |
1656 | |
1657 | int mode_state = state; |
1658 | |
1659 | if(isLexiconToken(cur)) |
1660 | { |
1661 | tags_t tags = cur.tag_filter.tags(); |
1662 | for(auto tag : tags) |
1663 | { |
1664 | trans_sym_t flag = getFlag(Clear, tag, 0); |
1665 | state = hyperminTrans->insertSingleTransduction((int)alphabet_lookup(flag, flag), state); |
1666 | } |
1667 | pattern_element_t untagged = cur; |
1668 | untagged.tag_filter = tag_filter_t(); |
1669 | untagged.mode = Normal; |
1670 | bool free = (lexiconFreedom[cur.left.name] && lexiconFreedom[cur.right.name]); |
1671 | if(!free) |
1672 | { |
1673 | to_clear.insert(cur.left.name); |
1674 | to_clear.insert(cur.right.name); |
1675 | } |
1676 | trans_sym_t inflag = getFlag(Positive, transition_flag, transitionCount); |
1677 | trans_sym_t outflag = getFlag(Require, transition_flag, transitionCount); |
1678 | transitionCount++; |
1679 | if(transducerLocs.find(untagged) == transducerLocs.end()) |
1680 | { |
1681 | state = hyperminTrans->insertSingleTransduction((int)alphabet_lookup(inflag, inflag), state); |
1682 | Transducer* lex = getLexiconTransducerWithFlags(untagged, free); |
1683 | int start = state; |
1684 | state = hyperminTrans->insertTransducer(state, *lex); |
1685 | transducerLocs[untagged] = make_pair(start, state); |
1686 | } |
1687 | else |
1688 | { |
1689 | auto loc = transducerLocs[untagged]; |
1690 | hyperminTrans->linkStates(state, loc.first, (int)alphabet_lookup(inflag, inflag)); |
1691 | state = loc.second; |
1692 | } |
1693 | state = hyperminTrans->insertSingleTransduction((int)alphabet_lookup(outflag, outflag), state); |
1694 | for(auto tag : cur.tag_filter.pos()) |
1695 | { |
1696 | trans_sym_t flag = getFlag(Require, tag, 1); |
1697 | state = hyperminTrans->insertSingleTransduction((int)alphabet_lookup(flag, flag), state); |
1698 | } |
1699 | for(auto tag : cur.tag_filter.neg()) |
1700 | { |
1701 | trans_sym_t flag = getFlag(Disallow, tag, 1); |
1702 | state = hyperminTrans->insertSingleTransduction((int)alphabet_lookup(flag, flag), state); |
1703 | } |
1704 | } |
1705 | else |
1706 | { |
1707 | state = buildPatternSingleLexicon(cur, state); |
1708 | if(state == -1) |
1709 | { |
1710 | finished = false; |
1711 | break; |
1712 | } |
1713 | } |
1714 | |
1715 | if(cur.mode & Optional) |
1716 | { |
1717 | hyperminTrans->linkStates(mode_state, state, 0); |
1718 | } |
1719 | if(cur.mode & Repeated) |
1720 | { |
1721 | hyperminTrans->linkStates(state, mode_state, 0); |
1722 | } |
1723 | } |
1724 | if(finished) |
1725 | { |
1726 | for(auto lex : to_clear) |
1727 | { |
1728 | if(lex.empty()) |
1729 | { |
1730 | continue; |
1731 | } |
1732 | trans_sym_t flag = getFlag(Clear, lex, 0); |
1733 | state = hyperminTrans->insertSingleTransduction((int)alphabet_lookup(flag, flag), state); |
1734 | } |
1735 | if(end == -1) |
1736 | { |
1737 | end = state; |
1738 | } |
1739 | else |
1740 | { |
1741 | hyperminTrans->linkStates(state, end, 0); |
1742 | } |
1743 | } |
1744 | } |
1745 | } |
1746 | patternTransducers.erase(tok); |
1747 | return end; |
1748 | } |
1749 | else |
1750 | { |
1751 | die("Cannot compile self-recursive pattern '%S'", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str())); |
1752 | return 0; |
1753 | } |
1754 | } |
1755 | |
1756 | void |
1757 | LexdCompiler::readFile(UFILE* infile) |
1758 | { |
1759 | input = infile; |
1760 | doneReading = false; |
1761 | while(!u_feofu_feof_72(input)) |
1762 | { |
1763 | processNextLine(); |
1764 | if(doneReading) break; |
1765 | } |
1766 | finishLexicon(); |
1767 | } |
1768 | |
1769 | Transducer* |
1770 | LexdCompiler::buildTransducer(bool usingFlags) |
1771 | { |
1772 | token_t start_tok = {.name = internName(" "), .part = 1, .optional = false}; |
1773 | pattern_element_t start_pat = {.left=start_tok, .right=start_tok, |
1774 | .tag_filter=tag_filter_t(), |
1775 | .mode=Normal}; |
1776 | if(usingFlags) |
1777 | { |
1778 | if(shouldHypermin) |
1779 | { |
1780 | hyperminTrans = new Transducer(); |
1781 | } |
1782 | Transducer *t = buildPatternWithFlags(start_pat); |
1783 | if(shouldHypermin) |
1784 | t->minimize(); |
1785 | return t; |
1786 | } |
1787 | else return buildPattern(start_pat); |
1788 | } |
1789 | |
1790 | Transducer* |
1791 | LexdCompiler::buildTransducerSingleLexicon() |
1792 | { |
1793 | tagsAsMinFlags = true; |
1794 | token_t start_tok = {.name = internName(" "), .part = 1, .optional = false}; |
1795 | pattern_element_t start_pat = {.left=start_tok, .right=start_tok, |
1796 | .tag_filter=tag_filter_t(), |
1797 | .mode=Normal}; |
1798 | hyperminTrans = new Transducer(); |
1799 | buildAllLexicons(); |
1800 | int end = buildPatternSingleLexicon(start_pat, 0); |
1801 | if(end == -1) |
1802 | { |
1803 | cerr << "WARNING: No non-empty patterns found." << endl; |
1804 | } |
1805 | else { |
1806 | hyperminTrans->setFinal(end); |
1807 | hyperminTrans->minimize(); |
1808 | } |
1809 | return hyperminTrans; |
1810 | } |
1811 | |
1812 | void expand_alternation(vector<pattern_t> &pats, const vector<pattern_element_t> &alternation) |
1813 | { |
1814 | if(alternation.empty()) |
1815 | return; |
1816 | if(pats.empty()) |
1817 | pats.push_back(pattern_t()); |
1818 | vector<pattern_t> new_pats; |
1819 | for(const auto &pat: pats) |
1820 | { |
1821 | for(const auto &tok: alternation) |
1822 | { |
1823 | auto pat1 = pat; |
1824 | pat1.push_back(tok); |
1825 | new_pats.push_back(pat1); |
1826 | } |
1827 | } |
1828 | pats = new_pats; |
1829 | } |
1830 | |
1831 | void |
1832 | LexdCompiler::insertEntry(Transducer* trans, const lex_seg_t &seg) |
1833 | { |
1834 | int state = trans->getInitial(); |
1835 | if(tagsAsFlags) |
1836 | { |
1837 | for(string_ref tag : seg.tags) |
1838 | { |
1839 | trans_sym_t check1 = getFlag(Require, tag, 1); |
1840 | trans_sym_t check2 = getFlag(Disallow, tag, 2); |
1841 | trans_sym_t clear = getFlag(Clear, tag, 0); |
1842 | int state2 = trans->insertSingleTransduction((int)alphabet_lookup(check1, check1), state); |
1843 | int state3 = trans->insertSingleTransduction((int)alphabet_lookup(clear, clear), state2); |
1844 | trans->linkStates(state, state3, 0); |
1845 | state = trans->insertSingleTransduction((int)alphabet_lookup(check2, check2), state3); |
1846 | } |
1847 | } |
1848 | else if(tagsAsMinFlags) |
1849 | { |
1850 | for(string_ref tag : seg.tags) |
1851 | { |
1852 | trans_sym_t flag = getFlag(Positive, tag, 1); |
1853 | state = trans->insertSingleTransduction((int)alphabet_lookup(flag, flag), state); |
1854 | } |
1855 | } |
1856 | if (seg.regex != nullptr) { |
1857 | state = trans->insertTransducer(state, *seg.regex); |
1858 | } |
1859 | if(!shouldAlign) |
1860 | { |
1861 | for(unsigned int i = 0; i < seg.left.symbols.size() || i < seg.right.symbols.size(); i++) |
1862 | { |
1863 | trans_sym_t l = (i < seg.left.symbols.size()) ? seg.left.symbols[i] : trans_sym_t(); |
1864 | trans_sym_t r = (i < seg.right.symbols.size()) ? seg.right.symbols[i] : trans_sym_t(); |
1865 | state = trans->insertSingleTransduction(alphabet((int)l, (int)r), state); |
1866 | } |
1867 | } |
1868 | else |
1869 | { |
1870 | /* |
1871 | This code is adapted from hfst/libhfst/src/parsers/lexc-utils.cc |
1872 | It uses the Levenshtein distance algorithm to determine the optimal |
1873 | alignment of two strings. |
1874 | In hfst-lexc, the priority order for ties is SUB > DEL > INS |
1875 | which ensures that 000abc:xyz000 is preferred over abc000:000xyz |
1876 | However, we're traversing the strings backwards to simplify extracting |
1877 | the final alignment, so we need to switch INS and DEL. |
1878 | If shouldCompress is true, we set the cost of SUB to 1 in order to prefer |
1879 | a:b over 0:b a:0 without changing the alignment of actual correspondences. |
1880 | */ |
1881 | const unsigned int INS = 0; |
1882 | const unsigned int DEL = 1; |
1883 | const unsigned int SUB = 2; |
1884 | const unsigned int ins_cost = 1; |
1885 | const unsigned int del_cost = 1; |
1886 | const unsigned int sub_cost = (shouldCompress ? 1 : 100); |
1887 | |
1888 | const unsigned int len1 = seg.left.symbols.size(); |
1889 | const unsigned int len2 = seg.right.symbols.size(); |
1890 | unsigned int cost[len1+1][len2+1]; |
1891 | unsigned int path[len1+1][len2+1]; |
1892 | cost[0][0] = 0; |
1893 | path[0][0] = 0; |
1894 | for(unsigned int i = 1; i <= len1; i++) |
1895 | { |
1896 | cost[i][0] = del_cost * i; |
1897 | path[i][0] = DEL; |
1898 | } |
1899 | for(unsigned int i = 1; i <= len2; i++) |
1900 | { |
1901 | cost[0][i] = ins_cost * i; |
1902 | path[0][i] = INS; |
1903 | } |
1904 | |
1905 | for(unsigned int i = 1; i <= len1; i++) |
1906 | { |
1907 | for(unsigned int j = 1; j <= len2; j++) |
1908 | { |
1909 | unsigned int sub = cost[i-1][j-1] + (seg.left.symbols[len1-i] == seg.right.symbols[len2-j] ? 0 : sub_cost); |
1910 | unsigned int ins = cost[i][j-1] + ins_cost; |
1911 | unsigned int del = cost[i-1][j] + del_cost; |
1912 | |
1913 | if(sub <= ins && sub <= del) |
1914 | { |
1915 | cost[i][j] = sub; |
1916 | path[i][j] = SUB; |
1917 | } |
1918 | else if(ins <= del) |
1919 | { |
1920 | cost[i][j] = ins; |
1921 | path[i][j] = INS; |
1922 | } |
1923 | else |
1924 | { |
1925 | cost[i][j] = del; |
1926 | path[i][j] = DEL; |
1927 | } |
1928 | } |
1929 | } |
1930 | |
1931 | for(unsigned int x = len1, y = len2; (x > 0) || (y > 0);) |
1932 | { |
1933 | trans_sym_t symbol; |
1934 | switch(path[x][y]) |
1935 | { |
1936 | case SUB: |
1937 | symbol = alphabet_lookup(seg.left.symbols[len1-x], seg.right.symbols[len2-y]); |
1938 | x--; |
1939 | y--; |
1940 | break; |
1941 | case INS: |
1942 | symbol = alphabet_lookup(trans_sym_t(), seg.right.symbols[len2-y]); |
1943 | y--; |
1944 | break; |
1945 | default: // DEL |
1946 | symbol = alphabet_lookup(seg.left.symbols[len1-x], trans_sym_t()); |
1947 | x--; |
1948 | } |
1949 | state = trans->insertSingleTransduction((int)symbol, state); |
1950 | } |
1951 | } |
1952 | trans->setFinal(state); |
1953 | } |
1954 | |
1955 | void |
1956 | LexdCompiler::applyMode(Transducer* trans, RepeatMode mode) |
1957 | { |
1958 | if(mode == Question) |
1959 | trans->optional(); |
1960 | else if(mode == Star) |
1961 | trans->zeroOrMore(); |
1962 | else if(mode == Plus) |
1963 | trans->oneOrMore(); |
1964 | } |
1965 | |
1966 | Transducer* |
1967 | LexdCompiler::getLexiconTransducer(pattern_element_t tok, unsigned int entry_index, bool free) |
1968 | { |
1969 | if(!free && entryTransducers.find(tok) != entryTransducers.end()) |
1970 | return entryTransducers[tok][entry_index]; |
1971 | if(free && lexiconTransducers.find(tok) != lexiconTransducers.end()) |
1972 | return lexiconTransducers[tok]; |
1973 | |
1974 | vector<entry_t>& lents = lexicons[tok.left.name]; |
1975 | if(tok.left.name.valid() && tok.left.part > lents[0].size()) |
1976 | die("%S(%d) - part is out of range", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), tok.left.part); |
1977 | vector<entry_t>& rents = lexicons[tok.right.name]; |
1978 | if(tok.right.name.valid() && tok.right.part > rents[0].size()) |
1979 | die("%S(%d) - part is out of range", err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str()), tok.right.part); |
1980 | if(tok.left.name.valid() && tok.right.name.valid() && lents.size() != rents.size()) |
1981 | die("Cannot collate %S with %S - differing numbers of entries", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
1982 | unsigned int count = (tok.left.name.valid() ? lents.size() : rents.size()); |
1983 | vector<Transducer*> trans; |
1984 | if(free) |
1985 | trans.push_back(new Transducer()); |
1986 | else |
1987 | trans.reserve(count); |
1988 | lex_seg_t empty; |
1989 | bool did_anything = false; |
1990 | for(unsigned int i = 0; i < count; i++) |
1991 | { |
1992 | lex_seg_t& le = (tok.left.name.valid() ? lents[i][tok.left.part-1] : empty); |
1993 | lex_seg_t& re = (tok.right.name.valid() ? rents[i][tok.right.part-1] : empty); |
1994 | tags_t tags = unionset(le.tags, re.tags); |
1995 | if(!tok.tag_filter.compatible(tags)) |
1996 | { |
1997 | if(!free) |
1998 | trans.push_back(NULL__null); |
1999 | continue; |
2000 | } |
2001 | Transducer* t = free ? trans[0] : new Transducer(); |
2002 | if (le.regex != nullptr || re.regex != nullptr) { |
2003 | if (tok.left.name.empty()) |
2004 | die("Cannot use %S one-sided - it contains a regex", err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
2005 | if (tok.right.name.empty()) |
2006 | die("Cannot use %S one-sided - it contains a regex", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str())); |
2007 | if (tok.left.name != tok.right.name) |
2008 | die("Cannot collate %S with %S - %S contains a regex", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str()), err(name((le.regex != nullptr ? tok.left.name : tok.right.name)))(to_ustring(name((le.regex != nullptr ? tok.left.name : tok.right .name))).c_str())); |
2009 | } |
2010 | insertEntry(t, {.left=le.left, .right=re.right, .regex=le.regex, .tags=tags}); |
2011 | did_anything = true; |
2012 | if(!free) |
2013 | { |
2014 | applyMode(t, tok.mode); |
2015 | trans.push_back(t); |
2016 | } |
2017 | } |
2018 | if(tok.optional()) { |
2019 | Transducer* t = free ? trans[0] : new Transducer(); |
2020 | tags_t empty_tags; |
2021 | insertEntry(t, {.left=empty.left, .right=empty.right, .regex=nullptr, .tags=empty_tags}); |
2022 | did_anything = true; |
Value stored to 'did_anything' is never read | |
2023 | if (!free) { |
2024 | applyMode(t, tok.mode); |
2025 | trans.push_back(t); |
2026 | } |
2027 | did_anything = true; |
2028 | } |
2029 | if(free) |
2030 | { |
2031 | if(!did_anything) |
2032 | { |
2033 | trans[0] = NULL__null; |
2034 | } |
2035 | if(trans[0]) |
2036 | { |
2037 | trans[0]->minimize(); |
2038 | applyMode(trans[0], tok.mode); |
2039 | } |
2040 | lexiconTransducers[tok] = trans[0]; |
2041 | return trans[0]; |
2042 | } |
2043 | else |
2044 | { |
2045 | entryTransducers[tok] = trans; |
2046 | return trans[entry_index]; |
2047 | } |
2048 | } |
2049 | |
2050 | void |
2051 | LexdCompiler::encodeFlag(UnicodeString& str, int flag) |
2052 | { |
2053 | UnicodeString letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; |
2054 | int num = flag; |
2055 | while(num > 0) |
2056 | { |
2057 | str += letters[num % 26]; |
2058 | num /= 26; |
2059 | } |
2060 | } |
2061 | |
2062 | trans_sym_t |
2063 | LexdCompiler::getFlag(FlagDiacriticType type, string_ref flag, unsigned int value) |
2064 | { |
2065 | //cerr << "getFlag(" << type << ", " << to_ustring(name(flag)) << ", " << value << ")" << endl; |
2066 | UnicodeString flagstr = "@"; |
2067 | switch(type) |
2068 | { |
2069 | case Unification: |
2070 | //cerr << " Unification" << endl; |
2071 | flagstr += "U."; break; |
2072 | case Positive: |
2073 | //cerr << " Positive" << endl; |
2074 | flagstr += "P."; break; |
2075 | case Negative: |
2076 | //cerr << " Negative" << endl; |
2077 | flagstr += "N."; break; |
2078 | case Require: |
2079 | //cerr << " Require" << endl; |
2080 | flagstr += "R."; break; |
2081 | case Disallow: |
2082 | //cerr << " Disallow" << endl; |
2083 | flagstr += "D."; break; |
2084 | case Clear: |
2085 | //cerr << " Clear" << endl; |
2086 | flagstr += "C."; break; |
2087 | } |
2088 | encodeFlag(flagstr, (int)flag.i); |
2089 | if(type != Clear) |
2090 | { |
2091 | flagstr += "."; |
2092 | encodeFlag(flagstr, (int)(value + 1)); |
2093 | } |
2094 | flagstr += "@"; |
2095 | return alphabet_lookup(flagstr); |
2096 | } |
2097 | |
2098 | Transducer* |
2099 | LexdCompiler::getLexiconTransducerWithFlags(pattern_element_t& tok, bool free) |
2100 | { |
2101 | if(!free && entryTransducers.find(tok) != entryTransducers.end()) |
2102 | return entryTransducers[tok][0]; |
2103 | if(free && lexiconTransducers.find(tok) != lexiconTransducers.end()) |
2104 | return lexiconTransducers[tok]; |
2105 | |
2106 | // TODO: can this be abstracted from here and getLexiconTransducer()? |
2107 | vector<entry_t>& lents = lexicons[tok.left.name]; |
2108 | if(tok.left.name.valid() && tok.left.part > lents[0].size()) |
2109 | die("%S(%d) - part is out of range", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), tok.left.part); |
2110 | vector<entry_t>& rents = lexicons[tok.right.name]; |
2111 | if(tok.right.name.valid() && tok.right.part > rents[0].size()) |
2112 | die("%S(%d) - part is out of range", err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str()), tok.right.part); |
2113 | if(tok.left.name.valid() && tok.right.name.valid() && lents.size() != rents.size()) |
2114 | die("Cannot collate %S with %S - differing numbers of entries", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
2115 | unsigned int count = (tok.left.name.valid() ? lents.size() : rents.size()); |
2116 | Transducer* trans = new Transducer(); |
2117 | lex_seg_t empty; |
2118 | bool did_anything = false; |
2119 | for(unsigned int i = 0; i < count; i++) |
2120 | { |
2121 | lex_seg_t& le = (tok.left.name.valid() ? lents[i][tok.left.part-1] : empty); |
2122 | lex_seg_t& re = (tok.right.name.valid() ? rents[i][tok.right.part-1] : empty); |
2123 | tags_t tags = unionset(le.tags, re.tags); |
2124 | if(!tok.tag_filter.compatible(tags)) |
2125 | { |
2126 | continue; |
2127 | } |
2128 | did_anything = true; |
2129 | lex_seg_t seg; |
2130 | if (le.regex != nullptr || re.regex != nullptr) { |
2131 | if (tok.left.name.empty()) |
2132 | die("Cannot use %S one-sided - it contains a regex", err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str())); |
2133 | if (tok.right.name.empty()) |
2134 | die("Cannot use %S one-sided - it contains a regex", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str())); |
2135 | if (tok.left.name != tok.right.name) |
2136 | die("Cannot collate %S with %S - %S contains a regex", err(name(tok.left.name))(to_ustring(name(tok.left.name)).c_str()), err(name(tok.right.name))(to_ustring(name(tok.right.name)).c_str()), err(name((le.regex != nullptr ? tok.left.name : tok.right.name)))(to_ustring(name((le.regex != nullptr ? tok.left.name : tok.right .name))).c_str())); |
2137 | seg.regex = le.regex; |
2138 | } |
2139 | if(!free && tok.left.name.valid()) |
2140 | { |
2141 | trans_sym_t flag = getFlag(Unification, tok.left.name, i); |
2142 | seg.left.symbols.push_back(flag); |
2143 | seg.right.symbols.push_back(flag); |
2144 | } |
2145 | if(!free && tok.right.name.valid() && tok.right.name != tok.left.name) |
2146 | { |
2147 | trans_sym_t flag = getFlag(Unification, tok.right.name, i); |
2148 | seg.left.symbols.push_back(flag); |
2149 | seg.right.symbols.push_back(flag); |
2150 | } |
2151 | if(tok.left.name.valid()) |
2152 | { |
2153 | seg.left.symbols.insert(seg.left.symbols.end(), le.left.symbols.begin(), le.left.symbols.end()); |
2154 | } |
2155 | if(tok.right.name.valid()) |
2156 | { |
2157 | seg.right.symbols.insert(seg.right.symbols.end(), re.right.symbols.begin(), re.right.symbols.end()); |
2158 | } |
2159 | seg.tags.insert(tags.begin(), tags.end()); |
2160 | insertEntry(trans, seg); |
2161 | } |
2162 | if(tok.optional()) { |
2163 | lex_seg_t seg; |
2164 | if (!free && tok.left.name.valid()) { |
2165 | trans_sym_t flag = getFlag(Unification, tok.left.name, count); |
2166 | seg.left.symbols.push_back(flag); |
2167 | seg.right.symbols.push_back(flag); |
2168 | } |
2169 | if (!free && tok.right.name.valid() && tok.right.name != tok.left.name) { |
2170 | trans_sym_t flag = getFlag(Unification, tok.right.name, count); |
2171 | seg.left.symbols.push_back(flag); |
2172 | seg.right.symbols.push_back(flag); |
2173 | } |
2174 | insertEntry(trans, seg); |
2175 | } |
2176 | if(did_anything) |
2177 | { |
2178 | trans->minimize(); |
2179 | applyMode(trans, tok.mode); |
2180 | } |
2181 | else |
2182 | { |
2183 | trans = NULL__null; |
2184 | } |
2185 | if(free) |
2186 | { |
2187 | lexiconTransducers[tok] = trans; |
2188 | } |
2189 | else |
2190 | { |
2191 | entryTransducers[tok] = vector<Transducer*>(1, trans); |
2192 | } |
2193 | return trans; |
2194 | } |
2195 | |
2196 | void |
2197 | LexdCompiler::printStatistics() const |
2198 | { |
2199 | cerr << "Lexicons: " << lexicons.size() << endl; |
2200 | cerr << "Lexicon entries: "; |
2201 | unsigned int x = 0; |
2202 | for(const auto &lex: lexicons) |
2203 | x += lex.second.size(); |
2204 | cerr << x << endl; |
2205 | x = 0; |
2206 | cerr << "Patterns: " << patterns.size() << endl; |
2207 | cerr << "Pattern entries: "; |
2208 | for(const auto &pair: patterns) |
2209 | x += pair.second.size(); |
2210 | cerr << x << endl; |
2211 | cerr << endl; |
2212 | cerr << "Counts for individual lexicons:" << endl; |
2213 | unsigned int anon = 0; |
2214 | for(const auto &lex: lexicons) |
2215 | { |
2216 | if(empty(lex.first)) continue; |
2217 | UString n = to_ustring(name(lex.first)); |
2218 | if(n[0] == ' ') anon += lex.second.size(); |
2219 | else cerr << n << ": " << lex.second.size() << endl; |
2220 | } |
2221 | cerr << "All anonymous lexicons: " << anon << endl; |
2222 | } |